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Recent years have seen tremendous advancements and innovations in technology that also can be 
(and have been) used for teaching statistical thinking, reasoning, and literacy. However, these 
modern technological tools do not automatically yield better learning results than those achieved 
with traditional methods of instruction. More important than technology itself is a sound 
theoretical basis for building an effective technological tool. It is proposed that this theoretical 
basis should include aspects of usability, pedagogical aspects, and also content specific aspects. A 
brief description of the ACT tutoring systems program illustrates what a successful combination of 
these three aspects could look like. Then, the importance of the often neglected content specific 
aspects is demonstrated with examples from our own research. It is recommended that a special 
emphasis should be given to a systematic and sound evaluation of such technological tools.  
 
BACKGROUND 

Recent years have seen tremendous advancements and innovations in technology that also 
can be (and have been) used for teaching statistical thinking, reasoning, and literacy. Such 
technologies have been applied for basically all kinds of statistics education, such as in online 
courses, in tools for data analysis, and in tutoring programs that specifically attempt to improve 
statistical thinking. However, so far, the huge majority of these tools seem not to have been 
systematically evaluated in respect to whether they are really effective. And if they have been 
evaluated, usually only pre-post designs without control groups have been used (e.g., Kuhn, Hoppe, 
& Wichmann, 2006; Mills & Raju, 2011; Raffle & Brooks, 2005). Such designs might, however, 
only have very low internal validity (Rosenthal & Rosnow, 1991), that is, if improvements were 
found, it might not be clear whether these were attributable to the new technologies or to other 
factors that were not controlled for. So, “…in terms of future work in this field, there is a need for 
well-designed studies that control for confounding variables and other challenges related to 
empirical research” (Mills & Raju, 2011, p. 22). Apart from methodological concerns about the 
evaluation studies, the results found there were quite mixed and a general superiority of teaching 
with the new technologies over traditional teaching methods could not be recognized (e.g., Härdle, 
Klinke, & Ziegenhagen, 2007; Mills & Raju, 2011). Why is this so? In this paper, I propose that a 
systematic improvement in statistics education by using new technologies can only be achieved if 
the technical aspects are well connected to theoretical aspects that are relevant to the teaching-
learning process. In the next paragraph these theoretical aspects will be briefly discussed and then 
one of these aspects, content or task specific theories, will be illustrated in more detail. 

 
THEORETICAL REQUIREMENTS FOR TECHNOLOGY TOOLS 

Fascinating as a new technology may be, it does not automatically guarantee that users will 
profit from it: Users must also be able to interact appropriately with the respective tools. How to 
optimize this interaction can be found by trial and error, but if a tool is to be applied in the long 
term it is worthwhile to develop or rely on a usability theory that enables the tool-builders to 
develop adequate user interfaces. Such user interfaces are especially important in tools that are 
applied for teaching purposes. If the contents to be taught are complex, as is the case for statistical 
knowledge, it might not always be possible to build interfaces that are fully intuitively 
understandable. In that case it is necessary to teach the user to acquire some kind of technological 
literacy (Gould, 2010). How to teach that best, should be based on a pedagogical theory. From such 
a pedagogical theory one should also be able to derive directions about which kinds of teaching 
strategies should be used for which students under which circumstances. And finally, the contents 
to be taught or the task to be solved also can make a remarkable difference. In particular, it might 
make a huge difference how a given task is represented to the learner or recipient of statistical 
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information. The human information system is, for instance, much more sensitive to task 
representations that fit with the way a task naturally occurs than to other representations that also 
might make sense for a statistics educator (Sedlmeier, 2007). To take these specifics into account, 
one needs a content specific theory. So, to optimize instruction with the use of new technologies, it 
would be desirable to have at one’s disposal a theory that incorporates all three of these aspects 
(see Figure 1).   
 

 
 

Figure 1.  The three theoretical aspects that should be heeded when developing new technologies. 
 

The three theoretical aspects, which cannot always be clearly separated because of their 
high degree of interdependency (as indicated by the bidirectional arrows in Figure 1) are well 
heeded in intelligent tutoring systems (Sedlmeier, 2001). Especially the intelligent tutoring systems 
based on the adaptive control of thought (ACT, later ACT-R) theory of cognition have proven very 
effective and useful in school curricula (Ritter, Anderson, Koedinger, & Corbett, 2007). These 
systems are based on a pedagogical theory, that is, a theory about how people learn and modify 
their knowledge, and all systems build on task analyses of the specific contents to be taught which 
were elaborated in empirical studies prior to constructing the tutors (Anderson, Corbett, Koedinger, 
& Pelletier, 1995). The ACT tutoring-system research program that has now been in existence for 
over 25 years, is an excellent example of how theory can guide the construction of tutoring 
systems, and how in turn the empirical results from evaluation studies can improve the theory 
(Anderson et al., 1995). In the course of the empirical application of these tutors, a kind of usability 
theory also evolved that yielded improvements in the pedagogical aspects of the theory and lead to 
specifically designed user interfaces (e.g. Koedinger & Aleven, 2007).  

However, building an intelligent tutoring system is a very time consuming and complex 
affair, and as yet, the ACT research program does not seem to have produced a statistics tutor. But 
using the underlying comprehensive cognitive theory and the experience accumulated in this 
research group, building such a tutor would be a promising enterprise. Most attempts to using 
technology in statistics education are, so far, are of a much smaller scale and are usually based on 
only a subset of the three aspects depicted in Figure 1. Especially task specific theories usually play 
only a marginal role. In the following paragraph, I would like to illustrate, based on examples from 
our own research, why such a content specific component is very important for technological tools 
to be used in statistics education. 
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THE IMPORTANCE OF CONTENT SPECIFIC THEORIES 
The usual way to convey statistical information is through use of (rational) numbers and 

formulas. For quite a few statistically naïve persons and students with little or no statistical 
knowledge, this kind of representation, instead of being helpful, tends to create math anxiety 
(Ashcraft, 2002). But even for persons without math anxiety, rational numbers and formulas are not 
always the optimal way to communicate statistical information. Fortunately, better ways exist. It 
makes, for instance, a decisive difference whether probabilities are presented as relative 
frequencies (or rational numbers) – the usual way – or as absolute frequencies as they naturally 
occur. This prediction can be derived from two content specific theories. One is an evolutionary 
account which holds that our cognitive processes are adapted to our environment and therefore, 
representations that catch the structure of the environment better are more intuitively 
understandable than others. In the case of probabilities, there is nothing in the environment that 
directly corresponds to relative frequencies – the only information we can perceive out there is 
absolute frequencies (see Cosmides & Tooby, 1996). The other content specific theoretical 
approach, which makes an identical prediction, stems from learning theory. It postulates that 
probability tasks represented in terms of relative frequencies cannot be intuitively understood by 
statistical novices whereas such intuitions work if the probability information is given in absolute 
frequencies (e.g., Sedlmeier, 2005). This approach also explains why experts in statistics are able to 
solve tasks like the above (using Bayes’ formula) intuitively whereas novices cannot (because 
experts have over the years learned to use probabilities, which, after some time, are dealt with more 
or less intuitively). 

An example task may illustrate the difference. Let us first have a look at the task in its 
difficult (relative frequency) format:  

 
A reporter for a women's monthly magazine would like to write an article about breast cancer. As a 
part of her research, she focuses on mammography as an indicator of breast cancer. She wonders what 
it really means if a woman tests positive for breast cancer during her routine mammography 
examination. She has the following data: 

• The probability that a woman who undergoes a mammography will have breast cancer is 1%. 
• If a woman undergoing a mammography has breast cancer, the probability that she will test 

positive is 80%. 
• If a woman undergoing a mammography does not have breast cancer, the probability that she 

will test positive is 10%. 
What is the probability that a woman who has undergone a mammography actually has breast cancer, 
if she tests positive?  
 

This task (as well as similar tasks of this type) was solved correctly by less than 10% of 
participants, experts (medical doctors) and lay people alike, in several studies (for an overview see 
Sedlmeier & Gigerenzer, 2001). The usual way to solve it is to apply Bayes’s formula [p(cancer) = 
0.01, p(pos|cancer) = 0.8, and p(pos|no cancer) = 0.1, as given in text; p(no cancer) can be 
calculated as 1 – p(cancer) = 0.99]:  
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The low solution rates indicate that this is definitely a topic for the use of training 
programs, preferably ones based on the best technologies available. We devised tutoring systems 
that used both types of representations (see Figure 2) and compared the training results (Sedlmeier 
1999; Sedlmeier & Gigerenzer, 2001). The rational numbers in the right kind of representation in 
Figure 2 can be inserted into Bayes’ formula and the absolute frequencies (Figure 2, left) can be 
used to calculate the posterior probability of a woman of the respective population having cancer if 
she tests positive in the following way: 
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It turned out that the immediate training effects for both kinds of frequencies were 

comparably high (about 95% correct for the frequency tree and about 85% correct for the 
probability tree) but when participants were tested again after three months, those who had used the 
frequency tree in the training remained at their level whereas the solution rates for participants who 
had been trained with the probability tree representation diminished by about 40 percentage points. 
What does this example illustrate? It should illustrate the importance of having a suitable content- 
or task-specific theory: The seemingly equal visual representations, which would not make a 
difference according to a usability theory, make a remarkable difference that can be explained by a 
content specific theory.  

 

 
 

Figure 2.  Two almost identical representations for a given Bayesian task that yield vastly different 
long-term solution rates 

 
Using absolute frequencies is, however, not a universal solution for all kinds of tasks. It 

does, for instance, not work in other mathematical domains such as in integral calculus (Sedlmeier, 
Brockhaus, & Schwarz, 2014). And it also does not work automatically for all kind of tasks that 
examine the impact of sample size. Let us again illustrate this with a well known example from 
psychological judgmental research (Kahneman & Tversky, 1972): 

 
A certain town is served by two hospitals. In the larger hospital about 45 babies are born 

each day, and in the smaller hospital about 15 babies are born each day. As you know, about 50% of 
all babies are boys. The exact percentage of baby boys, however, varies from day to day. Sometimes it 
may be higher than 50%, sometimes lower.  

For a period of 1 year, each hospital recorded the days on which more than 60% of the babies 
born were boys.  

Which hospital do you think recorded more such days? (Or was there no difference?) 
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Tasks of this type could be argued to use at least partially absolute frequencies – they deal 
with the frequency of babies and the frequency of days. However, the solution rates are usually at 
chance level – only about a third of participants give the correct answer (here: smaller hospital). 
This changes, when the task is changed slightly. If the question refers to what can be expected on a 
single randomly chosen day (instead a period of 1 year), the solution rates go up to an average of 
75% (Sedlmeier & Gigerenzer, 1997).  

Why is that so? Sedlmeier and Gigerenzer (1997) argue that we have at our disposal an 
intuition that conforms to the empirical law of large numbers. This intuition can be applied when 
comparing two frequency distributions of different size (the distributions of boys and girls on a 
given day) but not (at least not directly) when comparing to sampling distributions (the 
distributions of the percentages of baby boys over one year, for both hospitals). Illustrating both 
tasks with the help of computer technologies by showing an animated sampling process helps in 
both cases, but the difference in solution rates remains substantial (Sedlmeier, 1998). Interestingly, 
this difference in solution rates is predicted by associative learning theory, implemented in a neural 
network (Sedlmeier, 2006). The natural way samples are acquired is repetitive sampling. And if 
this dynamic sampling process is mimicked by a technological tool, one would expect higher 
solution rates, which is what happens for frequency distribution tasks (comparing two frequency 
distributions). If however, the sampling process is about some aggregated measures, such as the 
percentage of baby boys over the period of one year (which yields an empirical sampling 
distribution), then this cannot be observed directly in a natural environment and therefore cannot be 
expected to trigger some intuitive judgment in persons confronted with such sampling distribution 
tasks.  

So what does this example illustrate? First, it should illustrate that a format that works well 
for one type of statistical task (e.g. a probability revision task) does not automatically also work 
well for another (a “sample size task”). Second, it illustrates that mimicking the actual process (by 
replacing a static description of the sampling process by an animation) is helpful. And third, 
illustrates that if tasks look quite similar at the surface levels (as frequency and sampling 
distribution tasks do), there might be a remarkable difference in respondents’ ability to solve them, 
if the task structure is in fact different. Also recommendations for teaching statistical thinking 
about this task would be different. Whereas for the understanding of frequency distribution tasks a 
good simulation of the sampling process should almost do the job of making the impact of sample 
size visible, sampling distribution tasks usually need some additional explanation. Taken together, 
the examples in this paragraph should illustrate that it is necessary for tutoring purposes, be it with 
or without technology, to first analyze the content or task at hand before starting extensive work on 
building such a tool. 

 
CONCLUSION 

This paper suggests that, to build effective technological tools that can further statistical 
thinking, it is necessary to have a sound theoretical basis not only for the technological part and its 
usability but also for the pedagogical aspects involved and for the – often neglected –content 
specific aspects. The importance of the latter was illustrated with examples from our own attempts 
to find out how teaching statistics, using technology, can be improved. It seems that, so far, there is 
a huge amount of work put into the development of technology in statistics education, but not so 
much into a systematic evaluation of the resulting tools. And it also seems that, as yet, quite a 
number of evaluation studies used suboptimal designs in evaluating the respective tools. If the 
theoretical basis for building such tools is made explicit and used for constructing the respective 
systems, this should yield practical benefits as well as improve the theoretical basis: fully theory 
guided tutoring tools can be expected to yield better learning effects and the evaluation the 
respective tools is again the basis for improving the theory. Such a continuing interaction between 
theory and practice seems to be the best way to optimize statistics education. 
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