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Statistics can be overwhelming for students due to the vast number of functions available in many 

software packages.  In the computer language APL, “operators” are higher order functions which 

modify or combine existing functions to produce new functions.  These operators allow us to use a 

reduced set of functions to produce a wide variety of useful results, using expressions which are 

surprisingly English-like. This approach simplifies the teaching – and learning – of statistics using 

software, by dramatically reducing the vocabulary that a student needs to master, and clarifying 

the fundamental principles of entry-level statistics. A working software program, TamStat, with a 

user interface and an optional interface to “R” has been implemented in Dyalog APL. 

 

INTRODUCTION 

The computer language APL is ideal for expressing statistical concepts.  The basic syntax 

and structure of APL is described in detail in (Iverson, 1962) and its extensions including defined 

operators are described in (Brown, 1984).   Since the language is array-based, sample data can 

easily be represented as a vector.   Many statistical operations can be represented as functions, or as 

operators--examples of which are described in (Iverson, 1979) and (Smith, 1981). And since APL 

uses infix notation and right-to-left precedence of operations, we can define a set of functions to 

make statistical expressions in APL appear English-like (Mason, 1986).  Finally, complex 

statistical output with multiple results can be stored in namespaces (Scholes, 1994). 

 

STATISTICAL FUNCTIONS   

There are four basic types of functions used in statistics.  These consist of summary or 

measurement functions used in descriptive statistics, probability distributions, relational functions 

for probability and hypothesis testing, and logical functions used to define the rules of probability.  

Summary functions are of the form  . A parameter is a summary 

function applied to a population; a statistic is a summary function applied to a sample. Probability 

distributions are dyadic functions whose left argument is a vector of parameters and whose right 

argument is usually a single numeric value.  Discrete distributions are defined by the probability 

mass function; continuous distributions are defined by the density function. Relational and logical 

functions described in (Falkoff & Iverson, 1973) produce Boolean results, 1 being true and 0 being 

false. Examples of these functions are described in detail in (Mansour, 2017). 

 

PROBABILITY  

Calculating probabilities requires not only a distribution and its associated parameters, but 

also a value and a relationship.    We need to construct a function which combines the distribution 

with the relationship.   This requires creating a dyadic operator probability whose left operand can 

be any distribution function and whose right operand is a relational function.  For example, the 

following expression calculates the upper tail probability for the standard normal distribution: 

 

normal 1.5                   ⍝ Standard normal density at 1.5 
0.12952                   

normal probability < 1.5     ⍝ Cumulative normal probability 
0.93319 

 

If certain parameters are needed, we can include them; thus, to find the probability that a 

randomly selected person is taller than six feet, given the mean and standard deviation of heights 

are 68 and 3 inches respectively:   

 

68 3 normal probability > 72        ⍝ Upper-tail probability 
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0.091211 
 

This works just as well for discrete distributions.  Thus, the probability of tossing 7 fair 

coins and getting exactly 3 heads is about 27%. 

 

7 0.5 binomial probability = 3       
0.27344 

 

 The general syntax of the probability operator is: 

 

 Result  ← [Parameters] (distribution probability relation) Value 

 

DISTRIBUTIONS 

Distributions can be useful for obtaining probabilities.   But we can also find critical values 

from them, determine their expected values or generate random variables from them.   Other 

software programs such as Excel or R simply create variations of these distributions as separate 

functions. A better approach is to simply have one function for each distribution and modify it 

using the appropriate operator.   

To find the critical value of a distribution, we start with a probability. This is an inverse 

process, so we use another operator criticalValue to do the job.  The syntax is similar to that of 

probability:   

 

Result  ← [Parameters] (distribution criticalValue relation) Proportion 

 

The following expression gives us the critical value of the Student t distribution with 9 

degrees of freedom.   The syntax suggests that it is the value which is less than 5% of all values.  

 

9 tDist criticalValue < 0.05 
1.8331 

 

We can calculate the expected value and the variance of a distribution using the theoretical 
operator by combining it with the appropriate summary function.   We use a dummy argument on 

the right to allow for the consistent representation of the distribution with parameters on the left.      

 

7 0.5 binomial theoretical mean '' ⍝ Expected Value  
3.5     

7 0.5 binomial theoretical var ''  ⍝ Variance       
1.75    

 

We can also use distributions to generate random variables from various distributions.  To 

simulate the random selection of 5 individuals by measuring their heights, we use the 

randomVariable function which takes a distribution on its left and a sample size on the right and 

produces a vector of the appropriate length:  

 

68 3 normal randomVariable 5                                         
66.974 67.566 69.933 68.071 74.094   

 

INFERENTIAL STATISTICS   

There are two main areas of inferential statistics:  confidence intervals and hypothesis tests.    

We define two operators,  confInt and hypothesis, to handle these cases.  The former is a monadic 

operator, which takes a summary function as its operand, while the latter is a dyadic operator which 

requires a summary function on its left and a relation on the right.  
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Confidence Intervals 

The confInt operator modifies a summary function to produce a confidence interval instead 

of a point estimate.  We represent a confidence interval as a 2-item vector containing the lower and 

upper bounds respectively.  The optional left argument is the confidence level which defaults to 

0.95.  The syntax for the confInt operator is:  

 

(Lower, Upper) ← [ConfidenceLevel | 0.95] summaryFunction confInt (Data | Stats)  

 

mean Height                        ⍝ Point estimate for mean  
68.98 

mean confInt Height                ⍝ 95% confidence interval                                                       
67.815 70.144    

mean confInt stats 49 68.98 4.053  ⍝ Using summary statistics                                                                                                 
67.816 70.144                                                                       

0.99 mean confInt Height           ⍝ 99% confidence interval                                               
67.427 70.533  

 

Hypothesis Tests  

Hypothesis tests are a more complex area of inferential statistics, and thus are harder to 

define as functions because there are a lot of moving parts and there is no clear-cut simple result.  

The p-value makes sense in some respects because the closer it is to 0 the more “false” the null 

hypothesis is. Unfortunately, the p-value has somewhat fallen out of favor with the statistical 

community, because it varies widely from sample to sample. (Nuzzo, 2014).  Statistics textbooks 

usually list two approaches to hypothesis tests:  the critical-value approach and the p-value 

approach. To test whether the average height exceeds 68 inches, we use the sample vector Height 
along with the hypothesis operator which produces a namespace that includes the test statistic and 

the p-value.   

 

HYP ← Height mean hypothesis ≤ 68   ⍝ create namespace HYP 
HYP.TestStatistic                   ⍝ t-Statistic                               1.691876225 
HYP.P                               ⍝ p-Value                  0.04857633797 
 

To generate presentable output we apply the report function to this namespace, using the 

significance level as optional left argument.     

 

 0.05 report HYP               ⍝ Generate hypothesis report                  
 _                                        
 X = 68.97959                              
 s = 4.05298                               
 n = 49                                    
 Standard Error: 0.57900                  
                                          
 Hypothesis Test                          
                                          
  H₀: µ≤68             H₁: µ>68           
 ┌─────────────────┬───────────────────┐  
 │Test Statistic:  │P-Value:           │  
 │t=1.6919         │p=0.04858          │  
 ├─────────────────┼───────────────────┤  
 │Critical Value:  │Significance Level:│  
 │t(α;df=48)=1.6772│α=0.05             │  
 └─────────────────┴───────────────────┘  
The hypothesis report above contains a comparison table which combines the critical-value 

and p-value approaches.     The test statistic in the upper-left hand corner is calculated from the 
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data, and the significance level in the lower right is usually given; however comparing these values 

is impossible since they are scaled differently.   To complete the table, we calculate across—the p-

value from the test statistic and the critical value from the significance level; to complete the test, 

we compare down – the test statistic to the critical value and the p-value to the significance level. 

   

SOFTWARE COMPARISON  

(Chen, 2016) states that the suitability of a programming language for a particular task is 

less about functionality and more about the expressability. The use of operators allows us to 

express statistical concepts in a consistent way without a proliferation of functions.   

Other statistical programs attempt to incorporate some of these concepts.  Excel uses a dot 

separator, e.g. NORM.DIST and NORM.INV, while R uses a single-letter prefix followed by a 

distribution name, e.g. pnorm, and qnorm , but these are still distinct functions.  Mathematica  uses 

relations in conjunction with its probability functions to handle upper-tail and interval probabilities.  

While these developments are encouraging, they don’t go far enough. 

TamStat expresses ideas in a more readable, English-like form.  Suppose the mean IQ is 

100 with a standard deviation of 15.  What is the probability that a randomly selected individual 

has an IQ above 90?  Table 1 shows how to calculate this probability using Excel, R, Mathematica 

and TamStat:   

Program Statistical Expression 

Excel =1-NORM.DIST[90,100,15,TRUE] 
Mathematica Probability[x > 90, x ~ NormalDistribution[100,15]] 
R pnorm(90,100,15,lower.tail=FALSE) 
TamStat 100 15 normal probability > 90   
Table 1 - Probability expressions using various statistical programs 

CONCLUSION  

TamStat can be used by an instructor as an electronic blackboard to illustrate various 

statistical concepts.  Students can use the program for homework assignments and tests. The 

elimination of tedious calculations and obscure syntax allows more material to be covered.    

Student reaction has been favorable over the past two years, especially to a graphical user interface 

which was added to provide expression builders for various statistical operations; one example is 

the probability wizard which can be seen at www.tamstat.com.   

 The unique structure of APL not only allows a domain expert to produce a system quickly 

without involving teams of programmers, it also provides a superior platform which to design a 

statistical program unlike any other.  Arrays as first-class objects are a natural way to represent 

sample data.  Functions can be used to define basic concepts such as a sample statistic or a 

probability distribution.  And finally, the operator paradigm allows students to use previously-

learned concepts to expand their knowledge and experiment with new ideas.  
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