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Evaluating experimental data calls for dealing with measurement uncertainty (MU); this is often 

reported as a learning obstacle to scientific concepts in lab work. We report on a study of 1,545 

secondary school students who evaluated self-collected data in a physics lab. Results reveal a) that 

students are aware of MUs depending on data variability and b) that the odds of framing a correct 

hypothesis after the experiment decrease (OR=0.66[0.57;0.76], p<.001) when students are aware 

of MUs in their decision-making process. This contradicts studies that identified students' lack of 

awareness of MUs as an obstacle in the evaluation of experimental data, and it could be interpreted 

to mean that learners decide conservatively when evaluating uncertainty-infused learning situations 

because of a lack of knowledge about MUs. 

 

INTRODUCTION 

The evaluation of data and the justification of scientific hypotheses are at the core of ‘doing 

science’ and accordingly implemented in many school science standards (e.g., NGSS Lead States, 

2013). However, the evaluation of quantitative data often calls for dealing with measurement 

uncertainties, a fact often neglected in schools (Priemer & Hellwig, 2016). While previous research 

has shown that students are able generally to comprehend concepts of uncertainties and discuss 

sources of uncertainty (Masnick & Klahr, 2003), students need a certain degree of unambiguity in 

the data for the revision of prior beliefs (Kanari & Millar, 2004), as they fail otherwise to adequately 

reason from data while generating a claim from data. In the context of lab work, it is particularly 

relevant to investigate how students justify a scientific claim based on experimentally gained data, 

which are often infused with uncertainty. Kanari and Millar (2004, p. 767) suggest that, besides the 

ability to deal with it appropriately, “the difficulty lies in students’ awareness that all measurements 

are inevitably subject to uncertainty.” In this context, little is known about how students’ awareness 

of measurement uncertainties influences reasoning from data. We want to contribute to filling this 

gap by investigating how awareness of data uncertainties influences students’ decision-making in 

hypothesis testing in a physics context (RQ 1). Furthermore, previous research shows that students’ 

reasoning from data might be influenced by data quality, e.g., the number of significant digits or 

variability (Masnick & Morris, 2008). For this reason, we also investigate the influence of data 

quality on students’ awareness of measurement uncertainties (RQ 2). 

 

RESEARCH QUESTIONS 

1. How does the degree to which students show awareness of data uncertainty influence the 

choice of a scientific hypothesis in terms of its correctness? 

2. How does the quality of experimentally gained data (herein, the number of significant 

places, more or less data variability) influence students’ awareness of measurement 

uncertainties and their use of data as evidence in hypothesis testing? 

 

METHODS 

The study was conducted among 1,545 secondary school students aged 13–16 years. 

Students were given a practical task to frame a hypothesis about the relation between the mass of a 

pendulum and its period of oscillation and to test this hypothesis through experimentation. The 

examination of the relation between pendulum mass and swing time is an easy experimental task, 

and it provides the opportunity for quantitative data collection. This context allows the participants 

to generate a subjectively plausible hypothesis formed from everyday life experiences. In the context 

of the pendulum, one can observe a variety of common misconceptions (Kanari & Millar, 2004). 

Accordingly, 87.4% of participants framed an incorrect hypothesis and will be confronted with 

anomalous data when conducting the experiment. We use this conflicting situation to engage students 
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in a profound data evaluation process in which students must decide whether to keep their (incorrect) 

initial hypothesis (e.g., pendulum mass affects swing time) or change it in favor of a correct one 

(time of swing is unaffected by pendulum mass). We examined the justifications for this decision 

using a well-elaborated instrument consisting of Likert-scaled items. The steps on the Likert scale 

ranged from 1 = “(statement) does not apply” to 5 = “applies fully.” In this test, which is answered 

immediately following experimentation, participants are asked to state to what extent the statements 

apply in their argumentation supporting or rejecting their hypotheses (for details regarding the 

questionnaire see Ludwig, 2017; Ludwig & Priemer, 2014). While this questionnaire consists of four 

different subscales, only two are included in the following analysis. One subscale included in this 

analysis is “Use of Data as Evidence,” which probes to what extent students rely on the measurement 

data as evidence when making decisions regarding their incorrect initial hypotheses (example item: 

“The measurement results were the biggest factor in my decision”). Furthermore, the awareness of 

measurement uncertainties was assessed by the scale “Measurement Uncertainties (explicit)” 

(example item: “When making my decision, I took into account that the experiment is not exact”). 

Concerning research question 2, participants were assigned randomly to three different conditions, 

which allowed students to generate data of different quality.  

Students in group A worked with hands-on material to test their hypothesis. The pendulum 

length was about 0.8–1 m, and the stopwatch provided allowed the swing time to be measured to 

one-hundredths of a second. The biggest source of uncertainty in this group is human reaction time, 

which can be assumed to be 0.5 s. Students in group B worked with a computer-simulated 

environment. Again, a digital stopwatch, which had to be started manually, was provided, allowing 

for swing time to be measured to one-hundredths of a second. Different from group A, the 

experimental demand is easier in group B. For example, the pendulum can be stopped and started by 

clicking a button. Furthermore, we decided to increase the length of the pendulum to 2–3 m, allowing 

students to observe the phenomenon on a standard computer monitor because the angular velocity is 

slower. This, in turn, increases the swing time and lowers the relative measurement uncertainty 

(because the reaction time stays the same). Group C worked with the same computer simulation as 

group B, the only difference being the stopwatch, which works automatically by means of an optical 

barrier, presents the measurement with four significant digits. Because the stopwatch is measuring 

automatically, the precision of the measurement in group C is indefinitely high. As well, because of 

the characteristics of the experiments outlined above, the uncertainty in the measurement data 

decreased from group A to C, while the data quality increased. The students’ hypotheses before and 

after the experiment were coded as binary (1 = correct).  

Data analyses were carried out by means of structural equation modeling using the package 

lavaan in R (Rosseel, 2012) and Mplus (Muthén & Muthén, 1998). All participants with a correct 

initial hypothesis were excluded. In total, 1,351 students entered the analysis. The overall 

measurement model, consisting of two latent variables representing the underlying two scales, 

showed an excellent fit to the data (χ2(33) = 153.34, p < .01, CFI = .96, RMSEA = .052, SRMR = 

.05). The model-based reliability for both variables are .75 for the measurement uncertainties scale 

and .85 for the data as evidence scale. 

 

RESULTS 

A descriptive analysis of the manifest scale means revealed apparently no difference in the 

use of data as evidence among groups A, B and C in the students’ justification for or against a 

hypothesis (Table 1). However, the means of the measurement uncertainties scale tended to decrease 

when data variability decreased (from group A to C). The statistical significance of between-group 

differences was tested within a multi-group structural equation model (Kline, 2016). Because the 

questionnaire is inextricably connected to the process of experimentation across all groups, special 

focus was placed on the establishment of measurement invariance (MI) as a prerequisite necessary 

for comparing means across groups (Vandenberg & Lance, 2000). MI could be established to the 

level of scalar MI for both sub-scales. The latent means of both scales were fixed to zero in group A, 

while the other means were freely estimated. Again, this model showed a very good fit to the data 

(χ2(131) = 307.4, p < .01, CFI = .95, RMSEA = .055, SRMR = .06). Standardized mean differences 

(interpretable as Cohen’s d) are also shown in Table 1. The latent means differ significantly across 

groups A–C for the measurement uncertainties scale, while there is no substantial difference for the 
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data as evidence scale. The effect size between groups A and B is small, while the difference between 

groups A and C and between groups B and C can be considered large. As the correctness of the 

hypothesis after the experiment is coded in binary, a multiple logistic regression analysis was carried 

out to regress the outcome of the chosen hypothesis after the experiment on the measurement 

uncertainties and data as evidence scales. The model reveals that both variables influence 

significantly the correctness of the hypothesis after the experiment. The odds ratios for the data as 

evidence scale is 3.40 [2.79;4.12], which means that the odds for framing a correct hypothesis for 

every 1-point increase on the original scale are multiplied by 3.40. This can be seen as a medium-to-

large effect. The odds ratio for the scale measurement uncertainties decreases the odds for framing a 

correct hypothesis by 0.66 [0.57;0.76], which can be interpreted as a small effect (Olivier, May, & 

Bell, 2016).  

 

Table 1: Proportion of correct hypotheses after the experiment, scale means, and standardized 

mean differences for the measurement uncertainties and data as evidence scales aggregated by the 

experimental condition. 

 

 Group A, 

hands-on, manual 

stopwatch, 

 n = 697 

Group B, 

computer-simulated 

experiment, manual 

stopwatch, 

n = 260 

Group C, 

computer-simulated 

experiment, automatic 

stopwatch, 

n = 394 

Incorrect hypothesis 

before the experiment 
100 % 100 % 100 % 

Correct hypothesis 

after the experiment 
34.5 % 49.6 % 74.4 % 

Scale means in 

Likert-scale units 

(SD) 

   

Data as Evidence 3.97 (0.76) 3.98 (0.89) 3.99 (0.89) 

Measurement 

Uncertainties 
3.43 (0.72) 3.27 (0.81) 2.69 (0.83) 

Standardized mean 

differences 
   

Data as Evidence 0 0.02 0.09 

Measurement 

Uncertainties 

0 

(reference group) 
-0.25* -1.13* 

*mean difference significantly differed from the reference group, p < .05 

 

CONCLUSION 

The main goal of this paper was to investigate the interplay of students’ awareness of 

measurement uncertainties, data quality, and hypothesis testing in the physics lab. On the one hand, 

our results imply that students are able to identify measurement uncertainties as a relevant issue in 

reasoning from data, as students show awareness of measurement uncertainties by performing 

relatively high on the 5-step Likert scale (between 2.69 and 3.43, depending on the group). This 

result seems to contradict that of Kanari and Millar (2004), who reported that students lack awareness 

of measurement uncertainties while analyzing data might hinder them in making correct inferences 

about variables in the pendulum context. However, equivalent to Kanari and Millar’s work, our 

students also had difficulties framing a correct hypothesis after the experiment. To identify possible 

causes for why students tend to maintain a wrong hypothesis after the experiment, we carried out a 

logistic regression analysis in which we predicted the outcome of the hypothesis after the experiment 

by means of the scales “Awareness of Measurement Uncertainties” and “Use of Data as Evidence.” 

While there are of course more predictors for framing a correct hypothesis, awareness of 

measurement uncertainties while justifying a hypothesis has a significant medium-sized negative 

effect on the correctness of the hypothesis after the experiment. We interpret this result so that 
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students behave conservatively in making statistical decisions in uncertainty-infused situations: 

while they obviously perceive data as uncertain, they maintain their initial wrong hypothesis, because 

they seem to lack knowledge of how to deal appropriately with uncertainties in their measurements. 

In contrast to Kanari and Millar’s work, this is not because they are unaware of uncertainties. This 

is strong evidence for the claim that we do need to foster explicitly students’ abilities in evaluating 

data and uncertainties in school science labs.  

With regard to research question 2, our results show that with an increase in data quality 

(less variability and more significant places), students perform lower on the measurement 

uncertainties awareness scale and perform better in framing a correct hypothesis after the experiment. 

This can be interpreted in two ways. First, this result implies we need to be aware of the fact that 

different kinds of measurement devices, providing data of different quality, may lead to different 

learning outcomes, because students may or may not be able to analyze data appropriately. Second, 

these results support similar research that showed learners’ data evaluation can be influenced by 

certain characteristics (Masnick & Morris, 2008). Although all three learning environments in this 

study allowed learners to come to the same conclusion (no relation between swing time of swing and 

pendulum mass), participants performed significantly lower when data seemed to show greater 

variability. Similar to Masnick and Morris’ (2008) suggestion, it seems that students tend to evaluate 

data means and variances intuitively rather than explicitly. As we lowered the variability from group 

A to C, we could observe an increase in correct hypotheses after the experiment. This may lead to 

the conclusion that an intuitive evaluation is only successful if data variability is minimal. 
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