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The mathematical foundations of probability can be challenging for our students to learn, and our 

students tackle many problems for practice. While analytical solutions to some problems can be 

difficult, empirical simulations can give intuition and guidance to students, provided that the 

students are able to perform the simulations. We discuss integrating computational learning in a 

probability course with a goal to strengthen student knowledge of probability concepts, 

algorithmic thinking, and computational skill. These skills also assist with bridging the gap 

between statistical theory and practice. Specific computational skill goals include writing 

functions, writing simulations to verify analytical results (including communicating results), and 

using a reproducible workflow.  

 

BACKGROUND 

 A course in Probability theory is typically expected of undergraduate statistics majors and 

is of interest for students interested in mathematics, economics, physics, chemistry, and many other 

disciplines. These courses may cover both discrete and continuous distributions, or there may be 

separate courses so that students can tackle discrete distributions with less of a calculus pre-

requisite. Probability courses tend to cover topics such as counting methods, expectation, variance, 

common probability distributions, working with functions of a random variable, leading up to limit 

theorems and other results. Our focus is not on this content, but rather, we want to consider the 

computational learning that goes along (or should go along) with this content.  

 The ASA Curriculum Guidelines (2014) detail the need for statistics students to be able to 

program, perform algorithmic problem solving, and use simulation-based techniques. 

Computational skills required include data wrangling, working with databases, and writing 

simulations, after which, results must be well-communicated. Thus, the Guidelines suggest we 

should consider the computational and communication aspects in our courses. The more recent 

Guidelines for Programs in Data Science (De Veaux et al., 2017) include computational and 

statistical thinking, and algorithms and software foundation as two of the six key competencies for 

an undergraduate data science major. The computational and statistical thinking competency 

reflects the argument from Breiman (2001) about the two cultures of algorithmic and data models. 

The increased focus on computational expectations in both sets of guidelines is clear, but we need 

to work to integrate these concepts into our courses.  

 Exploration of computational tools in statistics courses has a long history. Mills (2002) 

examines over 40 references that use computer simulation methods to teach statistics (in a variety 

of fields and for a wide range of topics).  Some focus has been on the Probability course. For 

example, Dinov & Sanchez (2006) explore the use of interactive applets in a Probability course to 

improve understanding of probability concepts.  Pfannkuch et al. (2016) take a different approach, 

garnering insights into teaching probability (at several levels) by interviewing individuals who use 

probability models on a daily basis in their work. The focus of these works is on different teaching 

methods, content framework, and/or new technology, not necessarily trying to lay out the 

computational framework or skills that students should be developing while in a Probability course, 

or study how effectively students can learn those computational skills. We want to examine that set 

of skills more closely.   

 At our institution, our Probability course is a pre-requisite for several other courses, 

including our Theoretical Statistics course (which is required for our statistics majors). In 

Theoretical Statistics, students engage in empirical simulations to verify analytical results and 

solve problems (Horton 2013). If that course is their first introduction to writing their own 

simulations, the students can be overwhelmed with trying to learn the computational and 

theoretical material. To help ameliorate this issue, we have been working to scaffold more 

computational learning into our Probability course (as well as our earlier courses), and require our 
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majors to take more computer science courses. Our current computational skill goals for 

Probability students include understanding and writing functions, understanding how to set up and 

write simulations to verify results, and using a reproducible workflow.   

 

IMPORTANCE 

 At a time when the statistics curriculum is still undergoing rapid development, with the rise 

of data science and computational expectations, it is important to consider the role of computation 

in courses that have traditionally been more theoretical in nature. By adding computational learning 

goals to Probability, we believe we are better preparing students for additional coursework in many 

fields and improving their ability to tackle real-life computational problems, and providing 

connections to other courses such as those in Data Science. The era of probability tables is over – 

our students need to be facile with appropriate technology.  

For the particular computational learning goals we have in mind, we believe that students 

who learn to write their own functions are better able to understand functions written by others and 

can use functions to streamline their workflow, as well as learn to break a problem down into 

smaller pieces (algorithmic thinking). Being able to write a simulation can help students check 

their understanding and intuition on a problem. Indeed, in some circumstances, simulations may be 

easier to do than direct derivations, and may help provide guidance and intuition for analytic 

solutions. Setting up an appropriate simulation (and writing necessary or useful functions) develops 

foundational algorithmic thinking skills. Finally, a reproducible analysis tool can help scaffold 

learning.  

 

COURSE MATERIALS AND ACTIVITIES 

 In recent semesters of our Probability course, there has been a greater emphasis on 

computational learning and algorithmic thinking as part of the learning goals. Briefly, we describe 

what this looked like from our perspective as the course instructor, and will address student 

comments and results in a later section. 

 Our course regularly enrolls over 30 students (at a small liberal-arts institution) of varied 

backgrounds. Students are introduced to R (2009) the first week (though many have seen it before), 

and we use textbooks for the class that are compatible with R or use R directly. The textbook used 

in the most recent iterations of the course is Dobrow (2013), which includes R throughout. Our 

specific implementation of R in class is an RStudio (2011) server where the students work with 

RMarkdown (2014) files, so that they can interweave text and code.  

 Students engage with the software in weekly lab activities written to supplement the course 

material. These labs range from learning to graph probability distributions and finding probabilities 

with commands to exploring a simulation and using it to address a problem. Each homework is 

also accompanied by a problem that includes a computational component that requires the use of 

the software. The computational components of the homework assignments increase in difficulty 

over the course of the semester. For example, the first week, students learn the basic components of 

a function in R and learn to tweak one that is provided to create a new function to do a very simple 

task. They also learn about pseudocode (an outline of appropriate steps for a simulation) and are 

prompted to break the problem down into the steps they need to accomplish on practically every 

assignment. In the third week, they have to write their own function, and use it to explore a few 

settings (i.e., starting to simulate). A few weeks later, they are presented with a problem and tasked 

with writing a simulation to arrive at a solution. At least three of the assignments involve students 

writing their own simulations to verify results, and in one of those cases, the simulation was much 

easier for the students to grasp than the analytical solution.  

Providing this scaffolding in the homework assignments allowed students to work on their 

computational and algorithmic thinking skills while still tackling all of the probability content. The 

structured development meant that students always had previous similar examples to build on, but 

the increasing difficulty in assignments posed an appropriate challenge.  

 Our exams included at least one problem requiring students to generate pseudocode or read 

output from a simulation (process what the code is doing and make use of the output). In addition, 

students have a course project that has a computational component that requires writing a 

simulation, and using a function to address a question of interest. Students then had to 
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communicate their results in a few paragraphs, using the simulation as support for their 

conclusions.  

 In the most recent iteration of the course (Fall 2017), students were also provided with 

RSupplement files, written by me, which took the R code from the textbook and supplemented it 

with detailed comments about what each step in the code was doing, as well as including some 

additional material not included in the text – additional example simulations or graphics to 

illustrate concepts, for example. These were provided as RMarkdown documents, and students 

were instructed to read them along with the textbook material for each class meeting. Students 

could also run the code in the RSupplements and experiment with changing values. This was 

designed to increase student interaction with the software and code, as we envisioned that not many 

students were stopping their reading to open R, typing in the example code from the textbook, and 

observing the results. It also provided the students with additional examples to reference when 

working on their assignments.  

 

SAMPLE ACTIVITY 

 This sample activity serves to illustrate a typical mid to late semester course computational 

homework problem with scaffolding (completed in addition to other problems from the textbook). 

Students are provided with an RMarkdown template with the following components. My 

comments about each part are provided in italics (and were not provided to the students).  

 

a. Solve Problem 5.6. (Dobrow, 2013, 205) This is a variant of the coupon collector problem, with 

15 “professors” to collect by taking classes. Students should have been able to solve this following 

the book examples. 

 

b. Now suppose Tina only takes 10 courses in the math department. What is the expected number 

of different professors she will have? (As in part a, assume that every time Tina takes a course, 

each professor is equally likely to be the instructor). There is a similar example to this in the text as 

well, but students have to recognize the context. For many students, a simulation is easier to grasp 

than the analytical solution here.  

 

We want to simulate and verify the results in part b. Recall that there are usually many ways to 

accomplish a programming task in R, so you might approach this differently than your classmates.  

 

c. Provide pseudocode to outline a reproducible simulation to verify your results in part b. This step 

is required so that students think about what they need to do before trying to do it. If students ran 

into issues with code that related to the algorithmic process for the simulation, I asked to see their 

pseudocode. If they hadn’t written anything here, I instructed them they had to do that first. 

 

d. Provide the R code for your reproducible simulation and run it. Students accomplished this in 

many ways. Some students wrote functions, others just wrote a loop or used the replicate() or 

mosaic::do() functions in R.  

 

e. Write a few sentences to compare the results of your simulation to your computations in part b.  

This step is necessary so that students learn to pull necessary information from the simulation, and 

learn to communicate their findings, as well as learn to validate their own results.  

 

ASSESSMENT 

 In order to assess the impact of our use of the RSupplements and the scaffolding structure 

for the assignments (as well as the related writing components of the course), we opted to solicit 

student feedback via surveys. The study was approved by the Amherst College Institutional 

Review Board. Students who opted in to the study (all 31 students) were given a short survey mid-

semester, and a second, longer survey at the end of the course.  

For the mid-semester survey, the focus was on the RSupplements, as those were new to the 

course. Students were asked to rate their level of agreement (SD=strongly disagree, D=disagree, 

N=Neutral, A=agree, SA=strongly agree) with the following statement: “I have engaged with the 
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RSupplements.” Students were also asked to “Indicate one aspect of the R Supplements that has 

benefitted your computational learning for Probability.” and to “Indicate one way that you feel the 

RSupplements could be improved or used to better support your computational learning in 

Probability.” 26 of 31 students submitted replies to this survey.  

The end of semester survey included questions covering the following aspects of the 

course: writing, computation, the RSupplements, and the feedback received on submitted 

assignments about writing and computation. For our purposes, we will focus on the questions 

associated with the computational portions of the homework (R portion) and the RSupplements. 

Students were asked to rate their level of agreement (using the same scale as above) with the 

following statements in relation to the writing on the R portion of the Homework assignments:  

• The assignments helped me understand my own thought processes in tackling the problems. 

• The assignments helped me understand how to present the steps of my probabilistic thinking in 

the solution. 

• The feedback on the assignments helped me improve my ability to communicate 

probabilistic/statistical concepts. 

Students were asked to rate their level of agreement with the following statements in relation to the 

RSupplements: 

• I read the RSupplements (as assigned, in conjunction with the textbook sections) each week. 

• The RSupplements helped me engage with and learn some R. 

• The commentary and extra material provided in the RSupplements was beneficial to my 

learning how to use R for probability. 

The two open-ended questions from the mid-semester survey were repeated here as well. 21 of 31 

students submitted replies to this survey. Of those, 4 students completed the end of semester survey 

but did not fill out the mid-semester survey. Thus, 17 of the 31 students completed both surveys.  

 

RESULTS 

 First, we will convey our sense of the outcomes for the students with this increased 

computation in the course. Then, we present the student responses in relation to the RSupplements, 

computational outcomes, and related writing. 

Overall, the increased computation in Probability seemed to serve the students well. They 

seemed to grasp the idea of a reproducible workflow and were able to work with the probability 

distributions via R commands fairly easily. Simulations were a bit more challenging, but with 

support, all students were able to complete the homework assignments and have working 

simulations. At a minimum, students advancing into our Theoretical Statistics course had exposure 

to writing their own (working) simulations, and communicating results. The projects had less 

scaffolding (individual assignment, no collaboration allowed), and simulations caused issues for 

one student there (it was a working, but incorrect, simulation). All students were able to address the 

final questions in the project that relied on a provided function where they had to explore the 

parameter space of the function inputs and use the results to support their findings. Overall, it 

seemed students were able to write functions and use them to tackle appropriate problems, 

although writing pseudocode for exams proved challenging for some students.  

To frame the survey results, we consider how students responded to their level of 

engagement with the RSupplements on the mid-semester survey, and how they responded to 

whether they read them as assigned on the end of semester survey (though those questions are not 

exactly equivalent). For the mid-semester survey, 17 out of the 26 students were in agreement with 

the statement (Agree -14, Strongly Agree - 3). The remainder of the responses were: Neutral – 6, 

Disagree – 2, and Strongly Disagree -1. By the end of the semester, more students responded that 

they were in disagreement or neutral with the associated statement, which seems to imply that 

while they used the RSupplements early on, they either did not keep up with the reading or did not 

feel a need to refer to them.  

In terms of responses to whether the RSupplements were useful for learning R, it is 

important to keep in mind the class make-up. Of the 31 students in the course, roughly half were 

statistics majors (or students with intention to declare in statistics). Thus, roughly half the class had 

previous exposure to R from at least one course (if not two or three courses). The responses to this 
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survey question indicate that of the 21 respondents, 10 were in agreement with the statement 

(Agree – 8, Strongly Agree – 2) with the remaining 11 either Neutral (7), or in disagreement with 

the statement (Disagree – 3, Strongly Disagree -1).  This is not surprising given the class makeup. 

A better question would have been to ask whether the RSupplements conveyed the importance of 

the algorithmic thinking in their computational content, rather than inquiring about learning the 

software.  

To assess if the RSupplements were useful to the students, we consider the responses from 

whether the students felt that the material was beneficial to learning how to use R for probability. 

Of the 21 responses, 12 students agreed with the statement (Agree - 9, Strongly Agree - 3), with 6 

being Neutral, and 3 responding Disagree. Overall, the sentiment seemed to be that the material 

was useful. Specific comments from the open-ended questions about how they were beneficial 

included repeated comments that they were useful for the homework, for examples of simulations, 

and for detailed explanations of the steps in said simulations.  

Clearly though, student interaction with the material was not as high as I would have liked 

given the set of computational learning outcomes, and students had suggestions about how to 

increase their interaction with the RSupplements. These included suggestions to refer to them more 

in class (I only walked through one or two examples using them during the semester), assign extra 

credit problems that required them, make the homework problems harder so they’d be more 

necessary to reference, as well as comments about their length needing to be trimmed (when 

combined with course workload).  

To look at the impact of the assignment scaffolding on the outcomes of learning to write 

functions and simulations, we can examine the responses about the R portions of the homework. 

First, we examine responses to the statement: “The assignments helped me understand my own 

thought processes in tackling the problems.” Of the 21 replies, 16 were in agreement with the 

statement (Agree – 10, Strongly Agree – 6) with the remaining 5 being Neutral (3) or Disagree (2). 

This suggests that the scaffolding and encouraging pseudocode was beneficial.  

Next, we consider whether students thought the assignments were useful in learning how to 

present the steps of a probabilistic argument (their probabilistic thinking). Of the 21 replies, 15 

were in agreement with the statement (Agree -11, Strongly Agree – 4), with 6 being Neutral (4) or 

Disagree (2). The Disagree responses shared one student between this and the previous statement. 

Notably, one student thought the assignments were useful for understanding their own thought 

processes but not learning to present the steps of that thinking.  

Finally, we consider the student responses to the feedback on the assignments, in terms of 

learning to communicate probabilistic and statistical concepts. Here, there were 14 replies in 

agreement (Agree – 11, Strongly Agree – 3), with the remaining 7 being Neutral (5) and Disagree 

(2). While still overall positive, it appears that I should consider refinements to my feedback. 

Providing feedback on these assignments included comments on the writing (clearly 

communicating results), the code, and the probability/statistical aspects of their explanations. This 

is a challenging trio, with the writing aspect potentially particularly challenging for statistical 

educators not used to providing feedback about it.  

 Future work includes examining student mastery of the computational learning goals that 

were added to the course.  Overall the use of supplemental material to assist with learning and 

scaffolding of the assignments appeared to be useful for many students.  

 

CONCLUSION 

 We have described changes to our Probability course in an attempt to satisfy new 

computational learning expectations for our students. We argue that these expectations are in line 

with new guidelines for statistics and data science students (ASA Curriculum Guidelines, 2014; De 

Veaux et al., 2017). While we have not yet undertaken research to see how well students are 

mastering those learning expectations, we have presented results here about how our approach was 

received by students and their assessments of the provided course materials, as well as anecdotal 

evidence of their mastery. The supplementary materials with additional explanations about aspects 

of the code and purpose of the commands seemed beneficial to students, and some suggestions 

were made for future improvements.  
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The computational goals of interest were to understand and write functions, understand 

how to set up and write simulations to verify results, and undertake a reproducible workflow. 

Students seemed to find the scaffolding approach of assignments (particularly the homework 

problem with a computational component) useful to understand their own thinking about the 

problem and structure a response including a probabilistic argument. As evidenced over the course 

of the semester, writing simulations was the hardest of these learning goals for students to achieve. 

Future work to examine how this skill is taught in other fields, such as computer science or 

physics, might be enlightening.  

 Providing our statistics students with skills that are both needed and which supplement 

their learning should be a high priority for statistics educators. Computational software can do 

amazing things, but only if one knows how to break down a problem and request the software work 

through it well. Adding computational learning goals to a course can feel challenging – it is more 

to teach after all, but the benefits for our students are immense. To conclude, one student 

responded to an open-ended end of the semester survey question with the following summary 

statement about what they learned during the semester in relation to the computational aspects of 

the course: “pseudocode -> easier life.” 
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