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Probability is highlighted by theoretical concepts, which are far from being intuitive. The first step 

is to identify key concepts; the second is to clarify these concepts not only using mathematical tools 

by illustrating either their value in context or their specific properties. We focus on facets of 

probability that allow for linking its various interpretations, or that link probability to statistical 

inference. An essential criterion of teaching is how far it allows learners a more direct access to 

the concepts on an intuitive level. For designing didactic animations, our principles are 

characterised by the following ideas: A dynamic change is explored in comparison to the initial 

situation. Like watching a video, one follows the stages of emergence of a relation between the 

investigated concepts. 

 

BACKGROUND 

We re-state fundamental problems with probability that arise from the specifity of this concept and 

the purpose for which it has been “designed”. This specifity requires meta strategies that go far 

beyond the instruction of the mathematical details. In particular, we show suitable tasks and 

interactive animations, which are designed to overcome learning obstacles.  

 

Paradigms of Science 

To identify the character of the concepts used in a theory, it is helpful to have a panoramic 

look around how these concepts are used and for which purpose. Which are the philosophical 

paradigms of science that regulated the emergence of these concepts (see Batanero, Henry, & 

Parzysz 2005)? For probability, it is the situations of the unknown either in the future or in the past. 

Especially when it comes to take precautions to safeguard against severe impact in the future, 

probability models are one of several approaches to analyse the situation and provide decisions.  

Pure randomness may be defined by the lack of control or the lack of any method of 

predicting the future outcome with certainty. We may see randomness as an idea embedded in 

several paradigms that compete with the way how to predict the future and explain the process of 

development. To make it simple, Borovcnik (2011a) sees three main paradigms: 

• Randomness and divination: randomness is the expression of God’s will. 

• Randomness and causality: randomness is without specific causes or reasons as opposed to 

causality, which embodies specific conditions in an experiment. 

• Random evolution vs creationism: evolution without specific reasons vs created by God. 

There are multiple interrelations between these paradigms. “If an all-knowing God exists, 

the question arises as to whether this may be reconciled with randomness and free will. As 

randomness means unpredictability it conflicts with omniscience. […] The debate between 

Darwin’s evolutionary theory and creationism is similar to the causality–randomness debate in 

physics. Is nature created by a supernatural being or has it evolved solely due to random effects?” 

(p. 74). We have to restrict ourselves here. As the conceptions seem to touch archetypal ways of 

thinking, they should not be neglected in teaching as otherwise they would continue to overlap with 

thinking that arises from the learned concepts.  

A Laplacean Demon who would know everything and use causal laws to predict the future, 

would let us use probability as a replacement or substitute for this wider knowledge as we do not 

know the background. We would need probability only as long as we have not yet detected those 

causal laws behind the investigated phenomenon.  

Divination would make probability superfluous as if God decides it is not to the human 

beings to investigate these decisions (that view might also explain the relatively late theoretical 

conceptualisation of probability and related concepts; see Borovcnik & Kapadia 2014). On the 

other hand, randomness as simple development without any deeper reason would prevent that a 

person influences – in any perceivable way – the course of an action so that one might interpret the 
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final outcome as God’s decision; in fact this has been used in the ancient oracles such as Delphi. 

Historically, we trace also the habit of outsourcing a crucial decision, such as the election of a 

person, to randomness in order to “hear” God’s decision (and to avoid responsibility for the 

decision). This aspect of probability coincides with the idea of fairness and equal chances that have 

played an eminent role in the emergence of the concept. 

 

Archetypal Ways to Approach Probabilistic Situations 

For any educational effort in probability (and statistics) it is essential to consider archetypal 

ways of thinking that have proven successful in other domains but are much less promising in 

stochastic situations simply because of their nature, which is genuinely characterised by an element 

of unpredictability. The following strategies have to be carefully taken up in teaching. Of course, 

here and there the background assumptions of a random situation may be simulated and by 

repeatedly being confronted with the low success rate of such strategies in artificial random 

problems, the students may re-consider their approach. However, more importantly, an open 

classroom discussion about the relative merits and disadvantages of such strategies might be much 

more helpful to convince the learners that their strategies are inappropriate in stochastic situations. 

For the following, we summarise ideas in Batanero and Borovcnik (2016) that go back to the 

research of Kahneman, Slovic, and Tversky (1982) starting from the early 1970’s. 

Search for causal connections. If one finds a causal connection, either the probabilities are 

much clearer or even superfluous.  

Search for patterns and similarities. This comprises strategies such as representativeness, 

by which a probability judgement is influenced by a perceived similarity to the generating process 

in the background. All kinds of evolving patterns of random sequences may be subsumed here. 

Ease of access to information, which may summarise the heuristics availability and 

anchoring. According to the availability strategy, probability is intuitively approximated to the ease 

of recalling relevant cases from memory. However, there is nothing more unreliable than personal 

memory. According to the anchoring phenomenon, probability judgements are highly influenced 

by given or indirectly provoked information. Here, the information could be arbitrarily set into a 

timely connection with an incident to judge.  

A less cognitively oriented commingling of strategies is the following one, which is not 

least important for decisions in face of the unknown. 

Replacing information by imitating other people (the herding effect). A personal judgement 

(and a decision based thereupon) may be influenced by what others do. With hindsight, information 

may be re-interpreted to fit and justify the actions chosen, which is called confirmation bias. 

The search-for-patterns strategy is grossly misled in case of stochastic problems. If the 

basic assumption of randomness applies, then any (awkward) pattern may occur without any gain 

in information. Thus, the search for patterns does not help; at least it does not help as long the 

character of randomness of the situation is not put under serious doubts. Therefore, early 

experiments and analyses in probability should focus on summary statistics and not on patterns 

how the results were actually generated. See also the experiments suggested below. 

Archetypal ways to approach probability problems do not change by education; they can 

only be eased out slowly by teaching the formal concepts in a way that the learners have a strong 

intuitive access to the formal level of the concepts. There are plenty of studies that well-educated 

people regress to these “primitive” strategies when they are cognitively overstrained (say, at least 

by time pressure that prevents a full analysis, see, e.g., Gigerenzer 2002).  

 

THE PROBLEM AND THE PRESENT APPROACH 

The Role of Intuitions, Fundamental Ideas, and Stochastic Thinking 

Fischbein (1975, 1987) views the individual concept acquisition determined by the 

interplay between primary raw intuitions and theoretical input from learning tasks, rules, and 

concepts that bear a more formal aspect and induce – besides learning mathematical rules – 

secondary intuitions, often impregnated by pictures or paradigmatic situations. If the secondary 

intuitions are strong enough, they overwrite the primary intuitions effectively, if not, if the 

theoretical concepts remain isolated, learning will not have a sustaining effect and individuals will 

return to their primary intuitions in case they need a judgement or help. 
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Arguments for a lack of an operational concept acquisition for the term probability may be 

seen in Borovcnik (2011a). One is the lack of feedback from using an adequate strategy in 

probability situations; that means that one may use a nonsensical strategy to find, e.g., the numbers 

in the state lottery and win, or one may have a suitable model for a random phenomenon and yet 

the decision proves wrong. Another indication is the ongoing discussion of fundamental ideas of 

stochastics, stochastic thinking, statistical reasoning, etc., which points into the direction of a form 

of thinking rather than merely applying a mathematical theory (routinely).  

So far, no one has arrived at a reasonable list of fundamental ideas of probability, the initial 

attempt of Heitele (1975) looks more like the contents of a textbook rather than fundamental ideas. 

Borovcnik (1997) has centred fundamental ideas around the idea of information, the specific type 

of probabilistic information and the operations on information such as revise (conditional 

probabilities) or increase the level of information (increase sample size), or transfer information 

from samples to populations if the information is randomly obtained (statistical inference).  

A further indication of the relevance of intuitions versus operations may be seen in the 

circumstance that there are numerous research studies on statistical literacy and a quite convincing 

attempt to operationalise the construct of statistical literacy (Gal 2002) but – so far – rarely a paper 

on probability literacy (with the exception of Borovcnik 2005, 2017, or Batanero and Borovcnik 

2016). To describe the construct of probability literacy is an open issue (see Batanero, Chernoff, 

Engel, Lee, & Sánchez 2016) though there are rudimentary attempts by Gal (2005). Finally, the 

abundance of paradoxes (Székely 1986) and the theoretical character of probability as advocated by 

Steinbring (1991) are further arguments that might be brought forward to follow the intuitions 

approach. Spiegelhalter (2014) highlights the sophisticated character of probability. 

 

Design Principles for Dynamic Applets to Support Concept Acquisition 

A more direct approach beyond the mathematical exposition of the theorems is a basic 

requirement of statistics education not only for students of studies different from mathematics. 

Also, the focus within mathematics lies heavily on the derivation of the mathematical connections 

and their logical proof relative to axioms and optimising criteria. For example, the Central Limit 

Theorem is hardly open to a full proof even to mathematics students. And in the proof, the used 

concepts – the characteristic function, e.g. – precludes understanding of the most relevant parts. 

However, it is not only the convergence of the distribution of the standardised statistics under 

scrutiny to the standard normal distribution. This theorem incorporates also the speed of 

convergence to the limiting distribution, which is highly influenced by the shape of the distribution 

of a single random variable (Borovcnik 2015). To clarify such issues enhances the Central Limit 

Theorem and the resulting importance of the normal distribution (even for non-parametric 

statistics). Our principles in designing the applets are signified by the following ideas: 

• An abstract concept of probability may be illustrated by its traces in relative frequencies in 

repeated experiments regardless of the connotation of probability. 

• The meaning of parameters of probability models may be enhanced by showing the effect of 

systematic changes of these parameters. 

• Central theorems (limiting theorems) are enhanced by simulation; however, rather than 

“showing” a limiting behaviour, which cannot be represented materially, we focus on a stable 

pattern, which inspires a thought experiment that finally enhances the theorem. 

All the applets share the exploration of a dynamic change of the initial situation. Like in a 

video, one looks at the different stages of emergence of a relation between the investigated 

concepts: Identify the key concepts, Clarify the concepts; Link to interpretations; Link to inference; 

Restate problems with them; Overcome the problem by suitable applets. 

 

TO IDENTIFY KEY CONCEPTS 

Variation and the Quality of Probability Information 

A basic difficulty is to understand the kind of information that lies in a probability 

statement. What does a probability of ½ really mean? It can be linked to a fair decision between 

two possibilities. On the other hand, a situation with no preference is all-too easily linked to the 

probability of ½; this equiprobability bias of Lecoutre (1992) seems most prompting if there are 
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two possibilities. Such an issue is best clarified by an open discussion in the form of an empirical 

interview with varying situations (see Borovcnik & Peard 1996). 

How does this expression link to repeated experiments? It is vital to avoid a too strong 

focus on the pattern in which the series develops as – if the randomness hypothesis applies – the 

pattern is arbitrary and each pattern is equally likely except one considers pattern as a class of 

outcomes. There is much research on random sequences and the individual judgement of 

probability of sequences that have to be compared (see, e.g., Chernoff 2013). For probability as a 

concept, the speculation about patterns is irrelevant as long as one does not consider the 

randomness hypothesis violated and then it is a matter of a quite complicated statistical test to 

apply in a replication of the data (not on the same data!).  

For a conceptual understanding of a probability statement it is vital to understand that the 

range of variation shrinks with larger series and that at the same time the single trials are fully 

subjected to their random character. That means also that there is no rule of compensation, which is 

often believed after teaching efforts to demonstrate the stochastic convergence of the relative 

frequencies towards the underlying probability. Rather than illustrating such a law of convergence, 

which cannot be done in any finite series, it is essential to show the clear pattern of shrinking in the 

variability of the random sequences. A suitable experiment for this purpose is to select random 

digits from 0 to 9 repeatedly and determine the relative frequency of each of the digits. 

Not with ever-increasing length of the random sequence. Only with two stages, let us fix 

50 and 1000 trials. And then repeat the whole simulation scenario often. What can be seen is that 

the digits ahead vary in an erratic way, which shows that the randomness in the background is fully 

at work. What also can be seen is that the range of variation is considerably smaller with 1000 

random digits than with only 50. A stable pattern of relative frequencies emerges with full-fledged 

random fluctuation for each trial, which is not a contradiction seen from this angle. It also shows 

that – assumed that the sample is in fact drawn randomly – the larger sample size provides the 

smaller variability. As a thought experiment, already here in an initial experiment, one may 

speculate about a shrinking towards the benchmark of 1/10 as the probabilities for the random 

digits are the same from the outset. We show one simulation in Fig. 1 but the reader should bear in 

mind that the static picture gets it life only if the repetition of the whole simulation scenario is 

played like an animated film to demonstrate the effect just described (see Borovcnik 2011b). 

 

  
 

Figure 1. Range of random variation of random digits with a few and with many data 

 

Other Key Properties of Probability 

The following sources contain more about key properties of probability: Borovcnik (2011b, 

2012, and 2015), Batanero and Borovcnik (2016). They cover the aspect of dynamic applets that 

may show – beyond and parallel to mathematical considerations – key properties of the concept of 

probability. A library with applets is available in Borovcnik (n.d.). The applets have been 

developed and tested in university courses for several years now. The feedback from the students 

has helped to improve them. 
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Pricing the unknown. Probability serves to exchange uncertainty and risk involved against 

money. This is part of the insurance contract where the client faces the possibility (risk) of an 

accident and pays the insurance premium to the insurance company. The client leaves the position 

of uncertainty (about the financial implications of an accident) to get into a position of certainty (no 

risk) but pays in advance for it. The insurance company – on the other side – leaves the position of 

certainty and takes the risk over from the client and gets a payment for this. Probabilities are the 

key for determining the price of the contract. The example serves also to discuss the various 

interpretations of probability (subjectivist for the client, frequentist for the company) and the utility 

of the impact (utility for the client, simple money for the company). For details, see Batanero and 

Borovcnik (2016). 

Estimating an unknown proportion (probability). The usual experiment is to repeat a 

binary random trial very often and show the limiting behaviour of the curve of the development of 

the relative frequencies of the investigated event. Also here, to avoid the empirically not reachable 

phenomenon of convergence, we prefer the Freudenthal (1972) variant of the experiment, which 

compares the distribution (!) of the result of the experiment at one specific sample size when the 

scenario is repeated quite often (with this sample size). To make it more specific, we perform the 

binary experiment 5 times and use it to estimate the unknown probability so that we have one 

estimate. Now, we repeat the whole experiment 1000 times and get 1000 estimates. We then 

determine the frequency distribution of the estimates of the unknown probability based on a sample 

of 5 and draw a bar graph of the distribution. We renew the whole setting now generating samples 

of 20 (and do this again 1000 times). Finally, we compare the pattern of distribution of the 

estimation of the unknown probability based on 5 and on 20 data. Again, we see the shrinking 

effect from above.  

This basic experiment avoids an obscure limiting behaviour of the relative frequencies and 

focuses instead on two snapshots illustrating the phenomenon: a larger sample size allows 

estimating the unknown probability with much more precision. The experiment also shows already 

in the initial phase what probabilities are for and how we can link probability and statistics and how 

we will operationalise the concept of statistical information and how we may transfer estimates 

from samples to populations (finite, or the processes that generate the samples). 

Central Laws. It is helpful to re-think the various laws of probability in comparison to each 

other. One example is to compare the distribution of several statistics related to a simple coin 

tossing experiment, which is performed 20 times. This sample is repeated often (more than 1000 

times) and the following statistics are analysed: Statistic 1: Number of Heads minus Tails, Statistic 

2: Average number of Heads minus Tails; Statistic 3: Standardised number of Heads minus Tails. 

The whole scenario is repeated with the basic tossing experiment performed 40 and finally 100 

times. The details of the experiment may be found in Borovcnik (2015); the analysis illustrates the 

various kinds of limiting behaviour (again via a thought experiment by extrapolating the stable 

pattern found). Statistic 1 diverges (!), Statistic 2 converges to one (!) point (Law of Large 

Numbers), Statistic 3 converges in probability to the standard normal curve (Central Limit Law). 

There are many more experiments of this kind in Batanero and Borovcnik (2016). They 

refer to conditional probabilities, to the addititivity of expected values, to the additivity of the 

variance in case of independent samples, informal comparisons of a probability distribution that 

represents the population and single sample results (which leads to informal inference) and further 

aspects of introductory probability with a seamless transition from probability to inferential 

statistics. For conditional probabilities there is also a multiplicative version of the Bayesian formula 

based on the so-called odds, which provide a much more suitable representation of probabilistic 

information for conditional probabilities. 

 

CONCLUSION 

It is essential to back up the intuitions by suitable experiments. Rather than investigating 

limiting experiments, which is not possible, we investigate a stable pattern at a fixed sample size. 

Then we compare this with a larger sample size (preferably four times as much). To compare the 

pattern allows an insight about the kind of probabilistic law, which stays behind. To integrate 

animations, analogies and simulations is more than only motivating; it may enhance the concepts 

much more and change intuitions sustainingly than a one-side mathematical approach would do. 
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