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Activities for students that highlight important probabilistic ideas may appeal to teachers because 

they offer the chance to do something “fun” in the classroom, in contrast to “routine” activities. 

There is, however, a risk that these activities are not taken beyond the “gimmick”, falling short of 

providing deep and effective learning of key principles. When teacher educators share such an 

activity with teachers, how do they help teachers know how to use the activity effectively in the 

classroom, to go beyond superficial “entertainment” to deep “education”? Several scenarios, 

including an activity about coin-tossing runs intended to highlight features of randomness, will be 

used as examples to discuss issues such as identifying key concepts, using simulations effectively, 

determining “how much is enough”, and connecting theory with experiment.  

 

INTRODUCTION 

I have a little party trick that I conduct with my pre-service teachers when we are doing our 

sessions on teaching probability (unfortunately, I cannot remember the source of inspiration for this 

activity). I ask them each to toss a coin, thus randomly allocating them to two groups based on the 

outcome of this toss. Those in the tails group are now asked to toss the coin 50 times, and record the 

sequence of tosses, e.g., HHTHTHTTTT… . Those in the heads group, in contrast, are asked to 

pretend that they are tossing a coin 50 times, and thus fake what they think is a convincing sequence 

of 50 coin tosses. They are thus to write down a list of heads and tails that would make me think they 

had really tossed the coin. After giving these instructions, I leave the room, and allow students to 

generate their sequences. In fact, I ask the students to repeat the process (randomly allocate 

themselves to a group, and then follow the real-generator or fake-generator instructions), so that each 

student has two sequences prepared by the time I return. I proceed to examine all the sequences and 

adjudge them as real or faked. My students are often quite impressed with my performance on this, 

because I have about a 75% success rate for correctly guessing whether or not the student generated 

the sequence by actually tossing the coin or by faking the process.  

The question is, what happens next? What do I do, as a teacher educator, with this 

experience? What do I intend for my pre-service teachers to learn from it? What will they end up 

doing with it? Will they use it themselves in a classroom, and how? 

Before addressing these questions, here is another scenario. Consider a high school teacher, 

who knows about the birthday “paradox” and who wants to use it in a lesson on probability because 

she thinks it will be engaging. She realises that there are 24 students in her class—with no twins to 

“ruin” the scenario—and so she asks the students to list their birthdays. They do so, and eventually 

one of two things happens: she either gets a match … or she does not. What happens next? What 

does she expect her students to learn from it? 

 

SOME CLASSIC PROBABILITY ACTIVITIES 

“Randomness” is a central idea for probability, so gaining an understanding of it is essential 

for learners. However, the concept is complex and the effective teaching of it is challenging. 

Comprehending randomness requires integrating multiple phenomena such as a long-term constant 

behaviour (likelihood), and short-term uncertainty (variation)—that is, both predictability and 

unpredictability. The very non-deterministic characteristics that define it are what make it difficult 

to structure teaching activities that convey the central ideas, since, for example, it requires more than 

an experiment that reveals 31 tails out of 50 tosses to make a case for a fair coin having a 50% 

probability of coming up heads. 

There are a number of “standard activities” that have become part of the repertoire for 

teaching probability. They are often passed on as a kind of “folk-lore”, shared during professional 

learning sessions or from teacher to teacher, or perhaps they become a little more formally 
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“authorised” when presented as activities in textbooks. Here are some examples (not all of these may 

be as “standard” or as well-known as suggested, but they serve to illustrate some important points 

later; note, too, that these may be variants of activities that you may know in different guises): 

 

• Tossing a six-sided die: A die is tossed a certain number of times, and the outcomes are tallied 

and then graphed. Sometimes the data obtained by separate individuals are combined to give a 

larger number of tosses in total.  

• Horse racing: Twelve counters, numbered 1 to 12 and representing horses, are placed on a 

racetrack, a certain number of steps or spaces long. Two dice are rolled and the outcomes 

summed, and the “horse” with that number then gets to move one space or step forward. The 

winner is the first horse across the finish line. [As is well known, horse number 7 is more likely 

to move than any of the other horses, while poor horse number 1 never leaves the start.] 

• The two spinner game: Two spinners, each equally likely to generate any one of the numbers 

from 1 to 9, are spun and the results summed. If the total is odd, then player 1 gets a point; if the 

total is even then player 2 gets a point. The winner is the first player to get 10 points. Is the game 

fair? [Source: Feely (2003); see also Baker and Chick (2007) and Chick and Baker (2005) for 

some discussion of this activity.] 

• The birthday “paradox”: Discussed earlier, the phenomenon in question concerns how likely it 

is that in a certain-sized group of people there are two people who share the same birthday. 

Surprisingly (hence the attribution of “paradox”), it takes a group size of only 23 for the 

probability of “birthday twins” to exceed 50%.  

• Real and fake coin tossing sequences: The success of the leader in the first activity described in 

the introduction relies on the participants’ likely lack of knowledge of the characteristics of coin 

tossing sequences (this will be discussed in more detail later). 

• “Monty Hall paradox”: The famous Monty Hall paradox arises from a game show in which the 

host shows the competitor three doors, one of which hides a car, while a goat is behind each of 

the other two doors. The host—who knows what is behind the doors—invites the competitor to 

choose a door, and, after hearing the choice, opens one of the other doors to reveal a goat. The 

competitor is given the opportunity to switch from the chosen door to the remaining closed door, 

after which the competitor’s final choice of door is opened to reveal the prize. Many people 

argue that there is nothing to be gained by switching choices, since there are now two doors—

one with a goat and one with a car—and so, for each, the chances of there being a car behind it 

is 50%. However, the revelation of the first goat gives, in effect, additional information about 

the situation, which means that switching choices actually gives you a 2/3 chance of winning the 

car. 

• What’s in the bag? Described in an article by Brousseau, Brousseau, and Wakefield (2001) after 

they conducted the activity with a fourth-grade class, this involves trying to figure out the 

contents of a bag containing five counters, some black and some white. Single counter samples 

can be taken, with the counter replaced each time.  

 

GIMMICKS AND PRINCIPLES 

Each of these activities can be used to illustrate certain principles of probability, as suggested 

below. In all the cases, there are aspects that can be usefully illuminated by using simulations, which 

might verify theory, provide evidence for a hypothesis, or allow other insights.  

 

• Tossing a six-sided die: This activity is typically done in order to highlight that each of the 

outcomes occurs about one-sixth of the time, and thus build up the idea of likelihood as a long-

term phenomenon. The graph of the combined data is often used to strengthen this claim, since 

the one-sixth-ness is more noticeable, with the proportional variation across the individual totals 

smaller than occurs when fewer tosses have been graphed. In addition, however, the activity also 

allows exploration of variation as a shorter-term phenomenon, to give a sense of what affects 

how close to or how far from one-sixth the proportions occur.  

• Horse racing: Consideration of the relatively simple sample space behind this scenario reveals 

that the different possible outcomes from rolling two dice and adding have different likelihoods, 
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thus resulting in the realization that some horses are more likely to win than others. Further work 

might allow exploration of the likelihood of different horses winning races on tracks of differing 

lengths. 

• The two spinner game: In theory—and the theoretical exploration of the sample space is an 

important aspect of this activity—the spinner game is unfair, with Player 2 (the even player) 

slightly more likely to win than odd. As it happens, with the difference in likelihoods being quite 

small, an important question to consider is whether or not the unfairness is likely to be observable 

in practice.  

• The birthday “paradox”: Determining the probability of getting a “twin” in a group of a certain 

size requires understanding of independent and complementary events. The resultant 

mathematics reveals how rapidly the likelihood grows as the groups get bigger, with the 

likelihood greater than 90% by the time there are 41 people in the group. The activity can also 

stimulate useful discussion of probabilistic scenarios which have counterintuitive results, since 

the abundance of different birthday dates might suggest that finding “twins” is less likely than 

actually occurs.  

• Real and fake coin tossing sequences: This activity allows an exploration of the characteristics 

of randomly generated sequences, including the proportional occurrences of different outcomes 

and the likely length of “runs” (a run is a subsequence of the sequence in which all outcomes are 

the same, such as TTTT). 

• “Monty Hall paradox”: The paradox can be resolved by considering conditional probability, or 

by representing the situation diagrammatically or with relative absolute frequencies (see the 

“Monty Hall paradox” entry in Wikipedia (https://en.wikipedia.org/wiki/Monty_Hall_problem) 

for some examples of different approaches). 

• What’s in the bag? This activity—in fact, a series of activities carefully designed by Brousseau 

et al. (2001)—allows students to explore ideas of randomness, sampling, using probability and 

statistics to make predictions, and how much uncertainty might be associated with a prediction.  

 

There are, however, risks that the activities are used in ways that reduce them to mere 

gimmicks, or, at least, which reduce their effectiveness for conveying important principles. Some 

possibilities are described below: 

 

• Tossing a six-sided die: When this activity is used, it is often the case that only the long-term 

“one-sixth” proportion is highlighted, to the point where some students, asked to draw a “typical” 

graph for, say, 60 tosses, are happy to have all outcomes occurring exactly 10 times. In this case, 

perhaps it is true that the idea of equal likelihood and the actual proportion of “one-sixth” has 

been learned (at least to some extent), but the issue of variation has not. The idea of randomness 

may thus be only partially addressed.  

• Horse racing: This activity is sometimes used too early in the curriculum, so that although some 

of its results become known—e.g., “7 is the best horse”—yet this may have been investigated 

only at a superficial level. There may be some discussion of how the outcomes are obtained, but 

perhaps without a comprehension of the full sample space (e.g., it is possible to conclude that “7 

is the best horse” without being careful about the fact that 3 on one die and 4 on the second is a 

different outcome from 4 on the first die and 3 on the other). Moreover, students may assume 

that because “7 is the best horse” then “7 will win the race most of the time”, when, in fact, on a 

10-space track 7 only wins about 40% of the time (it is, of course, more likely to win than any 

other horse, but this is not the same as winning “most” of the time). Sometimes the activity is 

used simply to show that there are situations where not all outcomes are equally likely, as a 

foundation for later exploration, which is fine as a learning objective, up to a point. However, 

students can come to think they “know” the activity and its lessons, having “done it” once and 

having had only a superficial examination of the situation, and they may not be inclined to engage 

with it again if the activity is revisited later in the curriculum for more in-depth study.  

• The two spinner game: As described in the teachers’ resource book (Feely, 2003), teachers might 

expect that this game should appear to be biased in actual play. Unfortunately, with a 41/81 

chance of getting even and a 40/81 chance of getting odd, using the spinners to produce points 
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for “odd” and “even” is not far off being equivalent to tossing a coin to determine odd and even, 

and even in a “race to 10” there is only a 52% chance that even will win (see Chick, 2010), which 

is not likely to be visible in routine classroom play. It is a nice game and good for discussing the 

sample space, but, for showing a biased game, this activity is not as effective as might be hoped. 

Moreover, incorrect arguments can lead to a correct determination of the bias (see Baker & 

Chick, 2007; Chick, 2010). Some adaptations for this game which are more suitable for 

investigating the idea of bias are presented in Baker and Chick (2007). For more experienced 

students, the game as it stands is useful for discussing the impact of small biases, but the teacher 

has to realize that this can be addressed, and figure out how best to do so. 

• The birthday “paradox”: The scenario described in the introduction of this paper is one way in 

which I have seen this activity addressed: grab a group of about 23 people and see if a match 

occurs. There is a difficulty here, though. What do students learn from seeing that their class 

contains a match? Will students be over-convinced about how frequently this occurs, and expect 

it to happen in most groups of 23? On the other hand, what do students learn if the class does not 

have any “twins”? Will they be un-convinced about the relatively high likelihood of getting 

twins? The fact is, neither outcome gives any sense of a 50% likelihood; a single group as the 

source of data for the scenario is not sufficient. Ideally, multiple groups of 23 need to be tested, 

if the idea is to give a sense of how likely it is to have a match. If used only with a one-off 

sample, students may remember the “23-people/50%-chance-of-twins fact” but may not have a 

deep sense of what this truly means, nor know how the result is verified. Callingham and Watson 

(2004) suggest using the birth-month scenario as an alternative, where, instead of looking for a 

date in common you look for a month, for groups of five people. This can be simulated in 

classrooms by randomly selecting groups of five students; they also suggest getting students to 

devise ways of simulating the larger collections of groups of five, before doing the theoretical 

analysis. 

• Real and fake coin tossing sequences: It is easy to imagine reducing this activity, as hinted in 

the introduction, to one in which the “psychic” teacher performs some “magic” and correctly 

guesses whether the sequences were real or faked. The students may well be impressed, but 

clearly more work is required to have students appreciate the way in which randomness manifests 

itself in the properties of the runs that appear in sequences. The teacher is, of course, relying on 

the fact that people unfamiliar with these properties will find it difficult to write a fake sequence 

containing runs of four or more consecutive heads (or tails): over 80% of sequences of 50 tosses 

will have at least one run of length 5 or longer. However, if only used as a gimmicky trick, the 

full lessons may be not only lost but actually un-taught.  

• “Monty Hall paradox”: Like the other activities discussed here, the lessons that can be learned 

from the Monty Hall paradox scenario depend on the way in which the scenario is investigated. 

There is potential to make important connections among the different ways of representing and 

resolving the problem, and to explore students’ own probabilistic reasoning as they propose 

different explanations for what is occurring. Such conversations are challenging for the teacher 

to manage, and there is a risk that the teacher provides a solution directly without allowing the 

rich discussion that is possible here.   

• What’s in the bag? The objective for this activity was to predict the contents of the bag. When 

Brousseau et al. (2001) implemented the activity, they made a deliberate choice not to reveal the 

contents of the bag after students have made their predictions. Many teachers would find this 

disconcerting, and would surely be tempted to allow students to validate their predictions by 

looking inside the bag for the “answer”. To do so would omit one of the key points of the activity, 

that oftentimes statistics (and the probabilistic underpinnings of sampling) are being used to 

make predictions without knowing the answer; that statistics can predict the likelihood of the 

answer, and allow for the uncertainty in the prediction. 

 

DISCUSSION 

The examples discussed above highlight the complexity of teaching probability—

particularly the idea of “randomness”—and give some insight into what is required of teachers in 

order to do so effectively. The interplay of content knowledge and pedagogical content knowledge 

(Shulman, 1986) is particularly striking. A deep understanding of randomness and how it is manifest 
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in probabilistic phenomena is clearly essential here, but the teacher must understand how to make 

this evident in the classroom to ensure these activities move beyond gimmicks to become effective 

learning activities that convey essential principles to students.  

Gibson’s 1977 theory of affordances is useful here. He suggests that things—objects, but 

also teaching materials and activities—hold an inherent potential to be able to be put to use in some 

way by us, if only we recognize that potential. For example, a lightweight plastic chair can be used 

as a seat, a bookshelf, and a rain shelter; each of these three things is an affordance of the chair. Class 

discussion of the birthday paradox affords the opportunity to discuss whether testing the activity on 

one class is going to tell us much; highlight the role of complementary events, independent events 

and the multiplication rule; and investigate what happens as the group gets larger. It also affords the 

opportunity to be presented as a “test just one class” stunt, or to be simplified for accessible analysis 

as in the birth-month variation suggested by Callingham and Watson (2004).   

The list below suggests some key aspects of content knowledge and pedagogical content 

knowledge that are likely to be necessary for the effective teaching of probability and, especially, 

randomness. 

 

• Profound understanding of randomness: The teacher’s own understanding of randomness needs 

to be deep and secure. Without good understanding, it will be difficult to recognize what concepts 

can be emphasized with the activities, and it will be too easy to reduce an activity to a mere 

gimmick or trick.  

• Knowledge of student conceptions: Awareness of students’ typical misconceptions is essential 

for teachers, together with a repertoire of strategies for addressing them. Helping students to 

understand whether “luck” exists, why an unbiassed coin that has just come up heads five times 

in a row is still only 50% likely to come up tails on the next toss, and that 3+4 is different outcome 

from 4+3 in the horse racing game, are just some of the many issues that will arise for some 

students and which need to be addressed effectively. 

• Know how the activity illustrates the phenomenon: Having strong content knowledge makes it 

possible to recognise the affordances of a particular activity, i.e., to identify exactly what 

principles can be demonstrated with the activity. In addition to recognising the affordances, 

however, the teacher must also know exactly what features of the activity make the principles 

evident and how to emphasize these appropriately. For example, doing the birth-month problem 

(rather than the birth-day paradox) allows a simpler exploration of the theory and a more 

manageable simulation for generating lots of examples of groups of size five.  

• Know how much evidence is needed to demonstrate the phenomenon: Given the inherent 

unpredictability of random generators (which is precisely what makes them random!), the 

teacher needs to be aware that illustrating a phenomenon requires statistical evidence not just 

“existence” evidence. Getting twins in a single class of 23 people does not help students to see 

the 50% likelihood of such an event; 14 occurrences of a “5” when rolling a die 60 times is not 

evidence of a “one-sixth” probability; and having horse “8” win the horse race game (which will 

happen around 20% of the time on a 10-space track) does not provide evidence for the greater 

likelihood of “7” … and yet all of these things can occur in an implementation of the activity. 

Brousseau et al. (2001) made specific comment about how the effectiveness of an activity can 

be affected by the chance occurrences of outcomes different from what is “needed” to show the 

principle required.  

• Build bridges from situation to simulation: For many probability activities, simulation provides 

a powerful way to get the large-scale repetitions of an activity that generate the required sample 

sizes for producing evidence for probabilistic phenomena. It is important to provide a “bridge” 

from the real situation to the simulation, so that students understand how the simulation generates 

what they were doing in the initial activity. In the case of rolling a die, for example, it is important 

to indicate what acts as the die in the simulator, discuss how the simulator allows it to be rolled 

600 times, explain how the results are tallied, and describe how the graph from the simulator is 

like the graphs produced earlier from the initial data. In the case of the Monty Hall paradox, for 

instance, the simulator has to be able to simulate a choice and the opening of a goat door and the 

option of changing. 
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• Recognise the power of simulations: As suggested above, simulations provide the opportunity to 

gather enough data to make a phenomenon more evident than might otherwise be the case. This 

provides impetus for developing a theoretical understanding of a phenomenon. As an example, 

contrasting 60 simulated rolls of a die, with 600 and then 6000 simulated rolls of a die allows a 

better understanding of both long-term constancy and short-term variation. Simulations can also 

be used for the exploration of phenomena that are difficult to explore theoretically such as the 

lengths of runs that might be generated by tossing a coin a certain number of times, or how often 

two of the numbers from 1 to 6 are missing when a die is rolled 10 times and the outcomes 

recorded (over 20% of the time).  

 

CONCLUSION 

For those knowledgeable about the complexity of teaching about randomness there are, 

perhaps, few surprises in what has been discussed here. Knowing how to “go beyond the gimmick” 

is essential for teachers, if students are to develop a deep understanding of randomness in particular 

and probability more generally. In the non-deterministic world of chance, where phenomena can be 

counter-intuitive and may not always involve straightforward computational algorithms, 

considerable effort is required to make sure that activities are conducted effectively and over enough 

time to ensure that key principles are learned (the importance of committing time cannot be 

overemphasized: e.g., Brousseau et al. (2001) ran over 25 learning sessions for their “what’s in the 

bag” activity). It is obviously vital that, in sharing these activities with teachers and future teachers, 

due emphasis is given to the principles afforded by such activities, and how to maximize their use so 

they are effective for student learning. It may well be helpful to be explicit about the risks and issues 

that have been raised here. 
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