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Many researchers mentioned that learners struggle when dealing with Bayesian situations, i.e. in 
situations that require using Bayes’ formula. It is further a wide consensus that both natural 
frequencies and visualizations facilitate learners’ performance in Bayesian situations. In this 
contribution we refer to five visualizations of Bayesian situations, i.e. a tree diagram, a double-
tree, an icon array, a unit square and a 2x2-table and investigate the errors that learners show 
when solve problems in Bayesian situations. We categorize these errors and link the errors to the 
specific characteristics of the visualizations. 
 
BACKGROUND  

Bayesian situations, i.e. situations that require using Bayes’ formula, are known as a 
subject in the field of probability that seems to be against human intuition (Tversky & Kahneman, 
1974).  Many researchers in probability education or cognitive psychology described errors that 
professionals and layman make when dealing with Bayes’ formula (e.g. Diaz & Batanero, 2009; 
Eddy, 1982; Zhu & Gigerenzer, 2006). A meta-analysis of McDowell and Jacobs (2017) yielded 
that only about 5% of participants in different studies were able to solve a task in a Bayesian 
situation like given in Figure 1 that shows an often used example of a Bayesian situation 
representing a medical diagnosis test (c.f. Johnson & Tubau, 2015). 

 
10% of women at age forty who participate in a study have a particular disease. 60% of women 
with the disease will have a positive reaction to a test. 20% of women without the disease will also 
test positive. 
What is the probability of having the disease given that the test is positive? 
 

Solution: 𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
௉(ௗ௜௦௘௔௦௘ ௔௡ௗ ௧௘௦௧ ௣௢௦௜௧௜௩௘)

௉(௧௘௦௧ ௣௢௦௜௧௜௩௘)
 

Figure 1. A Bayesian situation referring a medical diagnosis test. 
 

However, research in recent two decades yield two strategies that seem to facilitate dealing 
with Bayesian situations. The first strategy is to represent the statistical information of a Bayesian 
situation with natural frequencies (Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000). That means 
to use countable entities as a fictive population and to develop the sampling process based on this 
fictive population (Hoffrage, Gigerenzer, Krauss, & Martignon, 2002). The definition of a fictive 
population of 100 women and the translation of the Bayesian situation given above in the format of 
natural frequencies is shown in Figure 2. 

 
10 out of 100 women at age forty who participate in a study have a particular disease. 6 out of 10 
women with the disease will have a positive reaction to a test. 18 out of 90 women without the 
disease will also test positive.  
What is the proprtion of having the disease given that the test is positive? 
 

Solution: 𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑡𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
௉(ௗ௜௦௘௔௦௘ ௔௡ௗ ௧௘௦௧ ௣௢௦௜௧௜௩௘)

௉(௧௘௦௧ ௣௢௦௜௧௜௩௘)
=

଺

ଶସ
= 0,25 

Figure 2. Medical diagnosis test in the format of natural frequencies. 
 
The meta-analysis of McDowell and Jacobs (2017) yielded that using the format of natural 

frequencies increases the performance of participants in different studies from about 5% to about 
25%. A second strategy is to use visualizations of a Bayesian situation (e.g. Brase, 2009). Although 
studies using visualizations in addition to natural frequencies reported an increase of the rate of 

ICOTS10 (2018) Invited Paper Eichler, Böcherer-Linder

In  M. A. Sorto, A. White, & L. Guyot (Eds.),   Looking back, looking forward.   Proceedings of the
Tenth International Conference on Teaching Statistics (ICOTS10, July, 2018), Kyoto, Japan.
Voorburg, The Netherlands:  International Statistical Institute.     iase-web.org     [© 2018 ISI/IASE]



correct solution in different Bayesian situations to 40% to 70% (Binder, Krauss, & Bruckmaier, 
2015; Böcherer-Linder & Eichler, 2017), however, the facilitating effect of visualization is not as 
clear as the facilitating effect of natural frequencies (Johnson & Tubau, 2015; McDowell & Jacobs, 
2017).  

One reason of the ambiguity of results referring the strategy of visualizations could be 
identified in different styles of visualizations, i.e. a branch style, a nested style and a frequency 
style (Khan, Breslav, Glueck, & Hornbæk, 2015). The branch style, e.g. a tree diagram (Fig. 3), 
represents sets and subsets in a Bayesian situation in a hierarchical structure. The nested style, e.g. 
the unit square, comprise sets and subsets in a Bayesian situation as neighbored fields (Fig. 3) and, 
finally, the frequency style shows in addition countable entities representing the statistical 
information (Fig. 3). 

 

 
Tree diagram (branch style) 

 

 
 

Unit square (nested style) 

 
Double tree (branch style) 

 
2x2-table (nested style) 

 
 

 
 

Pictogram (frequency style) 
Figure 3. Five visualizations of the medical diagnosis test 

 
To investigate further the additional facilitating effect of visualizing Bayesian situations in 

which the statistical information is represented by natural frequencies, three directions of research 
are reasonable.  

A first direction involves an investigation of performance rates of different visualizations 
like shown in figure 3. On the basis of using natural frequencies, for example, the research of 
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Binder et al. (2015) implies that a 2 x 2-table is more effective than the tree diagram. Further, our 
own research gave evidence that the unit square is significantly more effective than the tree 
diagram (Böcherer-Linder & Eichler, 2017).  

A second direction could focus on properties of different visualizations that could 
theoretically explain different performance rates. For example, in our own research mentioned 
above, we showed that the visualization of the tree diagram and the unit square differed 
considerably in making transparent the set-subset relation that is used in Bayes formula: While the 
set of positive tested women is visualized by neighboring fields in the unit square, this set is not 
visualized by one node in the tree diagram but only in two branches that are not neighbored.  

In this paper we focus on the third direction to investigate differences in the facilitating 
effect of visualizations, i.e. to analyze the solution of those who make errors in dealing with 
Bayesian situations. For this, we refer to existing research concerning the categorization of errors 
in Bayesian situations. We further exemplarily analyze the five visualizations illustrated above 
from the perspective of errors when dealing with Bayesian situations. Finally, we describe the 
method of our study to investigate university students’ errors in different Bayesian situations. Since 
we are not able to present the results of our ongoing study in this paper, we will present these 
results at ICOTS10. 

 
CATEGORIES OF ERRORS WHEN DEALING WITH BAYESIAN SITUATIONS 

For regarding errors when dealing with Bayesian situations we exemplarily use two of the 
five visualizations representing different styles, i.e. the tree diagram and the unit square (Fig. 4). In 
these visualizations we indicate the sets and subsets or rather the cardinal number of these sets 

(natural frequencies) with letters. We define the quotient 
஼మ

஼మା஼ర
 as the solution in a Bayesian 

situation using Bayes formula. Actually, also other quotients, e.g. 
஼భ

஼భା஼య
, could represent a solution 

in a Bayesian situation, but every of these quotients could be identified with the given solution 
when the numbering of sets and subsets would be appropriately changed.  

 

  
Figure 4. Tree diagram and unit square with indication of sets and subsets 

 
Zhu and Gigerenzer (2006) gave in two studies about 200 students of different ages seven 

and, respectively, ten Bayesian situations, where the statistical data was represented by natural 
frequencies. They found four categories of errors that a substantial number of participants made. 

 The most significant error labeled as non-Bayesian strategy was a strategy that Zhu and 

Gigerenzer (2006) called “pre-Bayes” and that is represented by the quotient 
஻భ

஼మା஼ర
. They found this 

strategy in about 10% of all solutions. Based on the medical diagnosis task shown in Fig. 2, these 
participants had to find the proportion of people having the disease given a positive test. However, 
they used inappropriately the entire set of people having the disease instead of the intersection of 
the set of people having the disease and the set of positively tested people for their solution.  

Further, about 5% of the participants made an error that Zhu and Gigerenzer (2006) called 

“conservatism” represented by the quotient 
஻భ

஺
. This error was also reported as “base-rate only” by 

Gigerenzer and Hoffrage (1995). In this case, the information of having a positive test is not 
regarded.  
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About 3% of the participants made an error that Zhu and Gigerenzer (2006) called 

“evidence-only” represented by the quotient 
஼మା஼ర

஺
. This error was understood as opposite of the 

conservatism since in this case the first information, i.e. having the disease, is not regarded.  
Only about 1,5% of the participants made an error that Zhu and Gigerenzer (2006) called 

“representative thinking” represented by the quotient 
஼మ

஻భ
. This strategy was also reported by Dawes 

(1986) and Gigerenzer and Hoffrage (1995), who reported that nearly 6% of the participants used 
this strategy. In a broader context this strategy is also reported as the confusion between 𝑃(𝐴|𝐵) 
and 𝑃(𝐵|𝐴) when dealing with conditional probabilities (e.g. Diaz & Batanero, 2009). 

An error type that was not found in Zhu and Gigerenzer (2006), but was significant in 
Gigerenzer and Hoffrage (1995) was called “joint occurrence strategy” and is represented by the 

quotient 
஼మ

஺
. In this case, participants seem to over-emphasize the event of having the disease and 

getting a positive test result. 
 

CONNECTIONS BETWEEN ERRORS AND PROPERTIES OF A VISUALIZATION 
Based on existing research results of several studies (see the introduction) that yield 

different performances of participants when using different visualizations of Bayesian situations, it 
is a crucial question, if different visualizations also result in different distributions of errors. To 
investigate the distribution of errors based on different visualization is the main aim or this study. 

There are two main differences between the two visualizations shown in Figure 4, i.e. the 
tree diagram and the unit square. Firstly, the two subsets and their cardinal numbers that have to be 
identified for the denominator in the correct solution, i.e. C2 and C4, are represented by neighbored 
fields in the unit square but by two branches in the tree diagram that were not neighbored. This was 
the main issue of explaining significant differences in performance rates in Bayesian situations (c.f. 
Böcherer-Linder & Eichler, 2017). For this reason, a hypothesis is that students, who use the unit 
square, more frequently refer to the sum of C2 + C4, that is the denominator in the correct solution 
and also in the error strategies of “pre-Bayes” and “evidence-only”. It is further a hypothesis that 
the performances of participants using the unit square are not different from the performances of 
participants using the 2x2-table, the double tree or the icon array since all these visualizations has 
C2 and C4 as neighbored fields (2x2-table; icon array) or as a node (double tree).  

  Further, the set or rather its cardinal number B1 is represented by a node in the tree 
diagrams but not directly in the unit square and the icon array as shown in Figure 3. For this 
reason, it is a hypothesis that students using the tree diagrams more frequently refer to B1.  

With respect to the categories of errors that were reported in recent research the hypotheses 
mentioned above have to be modified as follows: 

 The category “joint occurrence strategy” (
஼మ

஺
) is not based on the use of B1 or C2 + C4. Thus, 

there seems to be no reason to expect differences in the solutions of participants using different 
visualizations. 

 Although the category “representative thinking” is based on the use of B1, also the shape of the 
unit square (the icon array and the 2x2-table) could trigger this error, since one could develop a 
quotient by focusing on one side of the diagram that is divided by the other side by a 
continuous line. For this reason, we do not expect differences when using the different 
visualizations. 

 The category “evidence-only” is based on the use of C2 + C4. For this reason, we expect more 
solutions in this category for those participants who use the unit square, the icon array or the 
2x2-table. 

 The category “conservatism” is based on the use of B1. For this reason, we expect more 
solutions in this category for those participants who use the tree diagram and also the double 
tree. 

 The category “pre-Bayes” is based on the use of both B1 and C2 + C4. However, to take into 
account at least implicitly C1 as a part of B1 seems not to be plausible for those participants that 
use the unit square or the icon array (and also the 2x2-table). However, since B1 is a node in the 
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tree diagrams, we expect that more participants using tree diagrams choose the “pre-Bayes” 
strategy. 
 

METHOD 
To investigate the strategies of students in Bayesian situations, we defined six different 

situations. In every situation, the context and the population was roughly described. The statistical 
information was only given in the visualization (for an example see the visualization with the tree 
diagram for one Bayesian situation in Figure 5). The other situations are given in Table 1 using the 
notation for sets or rather cardinal numbers as given in Figure 4. 

 
Economics (cf. 
Binder et al., 
2015) 

A: 1000 university students 
B1: 325 students attend in an economics course; B2: 675 attend not 
C1, C3: students are not career oriented; C2, C4: students are career oriented 
Task: Calculate the proportion of career oriented students among the students 
that attend an economic course. 

Clothes A: 100 clothes 
B1: 40 trousers; B2: 60 pullovers 
C1, C3: red; C2, C4: blue 
Task: Calculate the proportion of trousers among the blue clothes. 

Medical 
diagnosis test  

A: 1000 people 
B1: 100 disease; B2: 900 no disease 
C1, C3: test negative; C2, C4: test positive 
Task: Calculate the proportion of people having the disease among the 
positively tested people. 

Flowers  A: 120 flowers 
B1: 50 carnations; B2: 70 roses 
C1, C3: white; C2, C4: red 
Task: Calculate the proportion of carnations among the red flowers. 

Bulbs A: 100 bulbs 
B1: 40 sort A; B2: 60 sort B 
C1, C3: not flourishing; C2, C4: flourishing 
Task: Calculate the proportion bulbs of sort A among the flourishing bulbs. 

Table 1: Five situations requiring using Bayes’ formula 
 

Smoking 
 
400 university students were asked, if they 
smoke or not. 
The result is shown on the right side. 
 
Please identify the following proportion and 
write this proportion down as fraction. 
 
The proportion of male students among the 
non-smokers: ______________ 
 

 
Figure 5. Description of one Bayesian situation with the tree diagram 

 
The frequencies in every situation were developed in a way that allows to differentiate 

among the categories of errors described above. 
We conducted the test with a sample of 276 undergraduate students that were assigned to 

one of the five visualizations by random. For every condition, there was on one page a brief 
description of the visualization.  
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CONCLUSION 

The basis for our analysis of errors that students made when dealing with Bayesian 
situations were 1535 completed solutions. At ICOTS10 we will have finished the analysis of errors 
and the analysis of the distribution of errors on the five visualizations described in this paper. A 
first impression is that particularly the tree diagram yield a distribution of errors that is 
considerably different to the error distribution of the unit square, the icon array and also the 2x2-
table.  
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