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In this paper, we compare the effectiveness of two visualizations, i.e. the tree diagram and the unit 

square, in increasing people’s performance in Bayesian reasoning tasks. We summarize the results 

of three experiments with randomized samples of about nearly 300 university students. In the first 

experiment the students only had to compute ratios of different set-subset relations included in 

Bayesian situations. On step further, in the second experiment the students had to solve tasks by 
applying Bayes’ rule. In the third experiment we investigated the visualizations concerning the 

students’ ability to assess the impact of changing base rates in Bayesian situations. In all experiments 

there was empirical evidence for the unit square being more supportive. On this base we conducted 
a replication study with about 140 students in six different classes of lower secondary level to 

research on potential effects of mathematical education. The survey and the data-analysis of the 
fourth study are taking place currently. The results will be presented at the conference.  

 

INTRODUCTION 

The difficulties people usually have when coping adequately with Bayesian reasoning 

situations are widely known. Cosmides and Tooby (1996) speak of “clashes between intuition and 

probability” which are in line with the fact that even experts are mainly failing at Bayesian based 

judgements in their field of expertise by underlying “cognitive illusions” (Tversky & Kahneman, 

1974). Different researchers, for example, Eddy (1982) or Hoffrage and Gigerenzer (1998) report on 

studies in which only maximally 10% of the participating physicians were able to interpret results of 

a medical diagnosis like the following in the right way: 

 

“10% of women at age forty who participate in a study have a particular disease. 60% of women 

with the disease will have a positive reaction to a test. 20% of women without the disease will 

also test positive. ” (Johnson & Tubau, 2015, p. 3) 
 

Figure 1. A Bayesian situation referring a medical diagnosis test. 

 

Because misinterpretations in such situations of decision making could have serious 

consequences huge efforts in research have been made to identify difficulties in Bayesian reasoning 

situations and to look for strategies how to overcome them. In the meanwhile, psychological and 

educational research found out that the question of the Bayesian problems’ representation is crucial 

with regard to the kind of numerical information on the one hand, and to the kind of visualization on 

the other (McDowell & Jacobs, 2017). 

Representing numerical information via natural frequencies instead of probabilities 

facilitates Bayesian reasoning in situations like a medical diagnosis (e.g. Hoffrage & Gigerenzer, 

1998; Binder, Krauss, & Bruckmaier, 2015). In terms of this approach, the problem is given by:  

 

“10 out of 100 women at age forty who participate in a study have a particular disease. 6 out of 

10 women with the disease will have a positive reaction to a test. 18 out of 90 women without 

the disease will also test positive.” 
 

Figure 2. The medical diagnosis test situation represented by natural frequencies. 

 

The correct solution, which is the so-called positive predictive value of the test, can be 

calculated by Bayes’ rule either by using probabilities (cf. Fig. 1) or natural frequencies (cf. Fig. 2): 
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𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛) =
60% ∙10%

60%∙10%+20%∙90%
=

6

6+18
= 25%  (1) 

 

This facilitating effect of natural frequencies is especially based on the evolutionary 

argument that human mind has been tuned to this kind of information format “long before the advent 

of probability format” (Gigerenzer & Hoffrage, 1995, p. 697). As a consequence, also the 

computation becomes easier (cf. Johnson & Tubau, 2015): When comparing both terms for the same 

ratio in equation (1) only three absolute numbers instead of six percentages must be processed in the 

term.  

Whereas the facilitating effect of the natural frequency format is scientifically well 

researched, the facilitating effect of visualizations is more ambiguous. For this, we research on the 

question which kind of visualization is especially powerful in increasing people’s performance in 

Bayesian reasoning tasks. In this paper, we investigate the effectiveness of two visualizations, i.e. 

the tree diagram and the unit square.  

 

THEORETICAL BACKGROUND OF VISUALIZING BAYESIAN SITUATIONS 

Duval (1999) stresses the meaning of representation and visualization in the field of 

understanding mathematics. Following Kaput (1987, p. 22) “…the root phenomena of mathematics 

learning and application are concerned with representation and symbolization because these are at 

the heart of the content of mathematics and are simultaneously at the heart of the cognitions.” 

Especially regarding statistics and probability this becomes important, because the ability to read and 

to interpret graphical representations of data is a fundamental statistical idea for teaching statistics in 

school (Burrill & Biehler, 2011).  

There are different aspects which are fundamental for coping adequately with Bayesian 

situations: From a purely practical point of view, the foremost concern is to understand the problem 

situation and to get the right solution. Addressing this aspect, we speak of “Bayesian reasoning” in 

a narrow sense (cf. Böcherer-Linder, Eichler, & Vogel, 2017, p. 2). From an educational point of 

view of learning mathematics, additionally the understanding of the mathematical structure of 

Bayesian problem situations becomes important (cf. Eichler & Vogel, 2015). Addressing this aspect, 

we speak of “flexible Bayesian reasoning” in a broader sense (Böcherer-Linder et al., 2017, p. 2). 

An important issue concerning the flexible Bayesian reasoning aspect is, for example, “to investigate 

the influence of variations of input parameters on the result” Borovcnik (2012, p. 21). Subsequently, 

the question of visualizing Bayesian situations can be considered regarding different objectives.  

By mainly focusing on tree diagrams Spiegelhalter and Gage (2014) emphasize the need of 

visualizing Bayesian situations for facilitating a specific situation’s interpretation and allowing 

people to estimate a risk adequately. It has been shown several times that trees (e.g. Fig. 3, left side) 

can support Bayesian reasoning (e.g. Sedlmeier & Gigerenzer, 2001; Wassner, 2004; Binder et al., 

2015). Whereas there is a considerable amount of different visualizations for communicating 

Bayesian situations (Khan, Breslav, Glueck, & Hornbæk, 2015), research on visualizations of 

Bayesian situations for students’ learning is mainly restricted firstly to the Bayesian reasoning, but 

not the flexible Bayesian reasoning mentioned above and secondly, to the tree diagram (as well as to 

2x2-tables, cf. Veaux, Velleman, & Bock, 2011) but not to the unit square (Fig. 3, right side) which 

we plead for.  

 

 
 

ICOTS10 (2018) Invited Paper Vogel, Böcherer-Linder

- 2 -



 

Figure 3. Medical diagnosis situation represented in the tree (left) and the unit square (right) 

Referring to the diagnosis task represented in the frequency format (Fig. 2), the unit square 

is partitioned into four areas (Fig. 3) concerning the events having the disease (D), not having the 

disease (𝐷̅), getting a positive test result (T+) or a negative test result (T-). The vertical partitioning 

is determined by the event of having the disease which corresponds to the probability P(D) = 10% 

of having the disease and accordingly to the probability P(𝐷̅) = 90% of not having the disease. The 

horizontal partitioning depends on the vertical partitioning and, thus, represent conditional events, 

which correspond to the probability that a healthy person gets wrongly a positive test result (P(T +
|𝐷̅) (left side above) and accordingly to the probability that a person having the disease gets correctly 

a positive test result (P(T + |D) (right side above). The areas represent joint probabilities, i.e.P(D ∩
T+), P(D ∩ T−), P(𝐷̅ ∩  T+) and P(𝐷̅ ∩  T−). The natural frequencies shown in figure 3 represent 

from the perspective of probability theory the expected values for the compounded events, i.e. 6 

(D∩T+), 4 (D∩T-), 18 (𝐷̅ ∩T+) and 72 (𝐷̅ ∩T-).  

The unit square is a statistical graph (Tufte, 2015), which means, that the sizes of the 

partitioned areas are proportional to the sizes of the represented data. Therefore, the proportions of 

incidences, like e.g. the base-rate, in a population are represented numerically as well as 

geometrically. From a theoretical point of view there are advantages of the visualization by the unit 

square concerning both the Bayesian reasoning as well as the flexible Bayesian reasoning.  

• For finding the right solution of a typical Bayesian problem like in equation (1) the nominator 

as well as the denominator of the ratio representing the decisive subset relations are crucial. In 

the tree the relevant branches representing the ratio for the right solution are not directly related 

nor neighbored because they are not in line with the hierarchy of the tree diagram (Fig. 4, left 

side). On contrary, the relevant fields are always neighbored because the unit square has no 

hierarchical structure. Thus, we assume the unit square as being a more supportive visualization 

concerning Bayesian reasoning situations. 

• Concerning the flexible Bayesian reasoning the unit square is suited to visualize the change of 

influencing parameters like the base-rate. If there is, for example, a base-rate of 30% of women 

at age 60 to be considered in the diagnosis task, the changing situation can be displayed by the 

unit square via a “picture-formula” (Eichler & Vogel, 2010) because of the geometric properties 

of the unit square (fig. 4, right side). Thus, the unit square allows for predicting the resulting 

probability as becoming bigger without calculating exact values whereas the tree does not.    

 
 

 

 

 
 

 

 

Figure 4. Tree and unit square in situations of Bayesian reasoning and flexible Bayesian reasoning 

 

EMPIRICAL STUDIES 

When asking for increasing people’s performance in Bayesian reasoning an obvious first 

question is if the strategies of facilitating via the format of natural frequencies and via the format of 

visualizations can be combined. In fact, Garcia-Retamero and Hoffrage (2013) found a facilitating 

effect of visualizations in addition to the natural frequencies. However, it remains as an open 

question, which visualization is most efficient and which features lead to a facilitating effect (Binder 
et al., 2015). Beyond this, we are especially interested in an empirical answer to the question which 

visualization and furthermore, which specific features of these different visualizations are crucial for 

supporting people in Bayesian reasoning situations as well as in flexible Bayesian reasoning 
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situations. Within our research group (Andreas Eichler and this paper’s authors) three experiments 

were conducted with university students by reducing on trees and unit squares both based on format 

of natural frequencies to investigate these questions. In concrete, the tree diagram and the unit square 

were examined referring to their effect on students’ computing set-subset relations in Bayesian 

situations as well as on their applying Bayes’ rule. This aspect represents demands on Bayesian 

reasoning. Furthermore, the effect of a changed base rate representing demands on flexible Bayesian 

reasoning was part of the investigation. In the meanwhile, the results of these three experiments are 

published in Böcherer-Linder and Eichler (2017) and Böcherer-Linder et al. (2017). In the following, 

we firstly summarize the most important cornerstones of these experiments with university students. 

Thus, the arrangement of the fourth study which focused on students of the lower secondary level 

can be explained by being in logical succession with the preceding experiments. 

 

Experiment 1 

In the first experiment 148 teacher students beyond the first year enrolled in a course of 

mathematics education participated, neither having heard something about Bayes’ rule nor the 

visualizations (tree, unit square) at the university before. In the test they were asked to compute 

different ratios among set-subset relations given in a Bayesian reasoning situation. In terms of the 
medical diagnosis situation they would have had to calculate, for example, the proportion of not 

infected and negatively tested people among all people or the proportion of the people having the 

disease among people being positively tested. This last proportion represents the structure of a typical 

Bayesian problem situation, which is, as mentioned above, more transparently visualized by the unit 

square than by the tree diagram (fig. 4, left side). The results provided significant empirical evidence 

for the unit square being more supportive especially referring those items which addressed demands 

of Bayesian reasoning. 

 
Experiment 2 

The participants of the second experiment were 143 undergraduates in the second year of 

their study enrolled in a course of Electrical Engineering. In comparison to the participants of the 

first experiment they must be judged as being more intensively and technically trained in 

mathematics at the university courses. However, concerning Bayes reasoning situations they also 

have not been schooled at the university before. In experiment 2 the participants were asked by four 

different items to apply Bayes’ rule, like for example: “Calculate the ratio of people afflicted with 

the disease among the people tested positive”. Therefore, four different Bayesian problem contexts 

were varied. The procedure was the same as in experiment 1. The results indicated a statistically 

significant effect in favor of the unit square, underlined by a large effect size. 

 

Experiment 3 
The third experiment followed immediately the second one to get information about those 

participants’ ability of flexible Bayesian reasoning. Therefore, they got nine items that addressed the 

impact of a changed base rate. For example, one of these items was: “How is the change of the 

following ratio if the proportion of people that are infected with the disease would be bigger? The 

ratio of people tested negative among the infected people will be bigger / smaller / constant.” The 

procedure was the same as in experiment 2. Based on theoretical considerations (cf. above) the unit 

square was expected to be more supportive because within this kind of visualization, for example, a 

changing base rate can be imaginable in front of the learners’ inner eyes by moving a unit square’s 

vertical line in the middle to the left or to the right. The nine test-items actually yielded empirical 

evidence for these theoretical assumptions. 

By summarizing these three experiments being part of the ongoing research of our research 

group it can be stated: The results of the three experiments confirmed our hypotheses that the unit 

square is more efficient to facilitate Bayesian reasoning as well as flexible Bayesian reasoning 

referring the visibility of the relevant mathematical structure of the problem situation. Recognizing 

this structure is crucial when computing set-subset relations in Bayesian situations, applying Bayes’ 

rule and estimating the effect of a changed base rate. A limitation of these studies must be seen in 

the level of the educational background of the participants. They all were students at university which 

reached university entrance level by having successfully finished the upper secondary school before. 
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Accordingly, we ask for the possibility of transferring the unit square’s supporting effects into the 

level of lower secondary school. On this base, we conducted a replication study with students of 

lower secondary level to research on potential effects of mathematical education. In the following, 

we will report on the current state of this fourth experiment in more detail. The final results will be 

presented at the conference. 

 

Experiment 4 
Subjects: The participants are about 140 students of six classes on lower secondary level of 

different schools in the region Rhein-Neckar neighbored to Heidelberg in Germany. Since the tree 

diagram is part of the curriculum of the federal state of Baden-Württemberg, the students were 

expected to have some pre-knowledge concerning this kind of visualization but not within the context 

of (flexible) Bayesian reasoning problems which are not part of the curriculum. The unit square has 

to be considered as being unknown because of (still) not being contained in mathematical text books 

for German secondary schools.  

Material and procedure: The participants were randomly assigned to either a unit square 

condition or a tree condition. The tasks in both conditions (unit squares and tree diagrams) were 

identical, only the visualizations differed (comparable to fig. 3). For purposes of replicating the 
forgoing studies in school the corresponding items were used again by asking for computing different 

ratios among set-subset relations given in Bayesian reasoning situations (cf. experiment 1), for 

applying Bayes’ rule (cf. experiment 2), and for flexible Bayesian reasoning (cf. experiment 3). 

These items were used by varying different Bayesian problem contexts. These contexts were chosen 

regarding their familiarity of the students’ daily live experience (for example, boys/girls wearing/not 

wearing bicycle helmets). Each subsample was provided with a brief description of the corresponding 

visualization. The test took 30 minutes. The participation was voluntary, and anonymity was 

guaranteed to the participants as well as to their parents. 

Hypotheses: Our theoretical arguments in favor of the unit square were based on having 

additional geometrical features but not the viewers’ pre-knowledge about Bayesian reasoning 

problems. Furthermore, the experiments 1 and 2 yielded some empirical evidence that the supportive 

function of the unit square holds across different groups of mathematical expertise concerning 

Bayesian reasoning tasks. Thus, we hypothesize the unit square as being more supportive for lower 

level secondary students when solving Bayesian reasoning problems. This effect will be expected as 

being larger in case of flexible Bayesian reasoning tasks because only the unit square with its 

geometrical properties allows for qualitatively calculating changing ratios whereas the tree diagram 

does not.  

Results: The survey and the data-analysis are currently going on. Results of the fourth study 

will be presented at the conference. 

 

CONCLUSION 

Communication of risk and uncertainty are “hot topics” (Spiegelhalter & Gage, 2014) where 

the coping with (flexible) Bayesian reasoning problems plays an important role. The theoretical 

considerations and the four empirical studies of our research group reported on here intend to enrich 

the debate towards efficient features of visualizations of Bayesian situations to support people 

becoming more competent in decision making under uncertainty. 
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