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Students struggle with understanding sampling variability. Recent transfer and conceptual change 

literature suggests a new pedagogical approach: supporting a causal explanation of why sampling 

variability decreases as sample size increases. We designed technological tools, new 

representations, and a hypothetical learning trajectory to help students understand causal 

mechanisms of sampling variability. Two causal explanations were targeted: “swamping”, extreme 

deviations from the mean are less influential in larger samples, and “heaping”, values near the 

population mean become more probable as sample size increases. Preliminary pilot testing of five 

students who recently completed an introductory statistics course demonstrated the potential of the 

activities for deepening students’ thinking, as well as the challenges of managing and articulating 

the abstraction of swamping and heaping. 

 

BACKGROUND 

Sample size and population variability fundamentally affect the precision and power of a 

study. Past American Statistical Association president Jessica Utts stated that understanding of the 

influence of sample size is part of “What Educated Citizens Should Know about Statistics and 

Probability” (Utts, 2003). However, introductory statistics students struggle to understand the 

dynamics of sample size and sampling variability (Chance, delMas, & Garfield, 2004), and poor 

understanding even among empirical researchers (Tversky & Kahneman, 1971) has played a part in 

the current reproducibility crisis, leading to calls for a “new statistics” (Cumming, 2014). Low-

powered studies may be leading to countless spurious results entering the scientific canon (Fiedler, 

2011). Without understanding and accounting for sample size, population variability, and their 

impact on sampling variability, researchers and the general public will continue to have great 

difficulty making the best decisions based on evidence, whether the statistical methods are old or 

“new”. 

 

RESEARCH ON SAMPLE SIZE & SAMPLING DISTRIBUTIONS 

Despite extensive study of sample size reasoning, there is no cogent theoretical framework 

of why, how, and when people reason about sample size (Lem, Van Dooren, Gillard, & 

Verschaffel, 2011). When Kahneman & Tversky (1972) provided a classic demonstration of 

sample size neglect, they theorized that people did not view sample size as relevant to decisions.  

Yet people correctly attend to sample size in certain contexts (Bar-Hillel, 1979; Obrecht, Chapman, 

& Suárez, 2010). Some sample size neglect may result from confusion about the difference 

between the distribution of individual values and the sampling distribution of the means 

(Sedlmeier, 1998), but confusions and inconsistencies are present even when people appear to have 

mastered this distinction (delMas, Garfield, & Chance, 1999; Well, Pollatsek, & Boyce, 1990). 

Current interventions for sample size neglect have only demonstrated success for limited 

domains and types of problems. Nisbett, Fong, and Lehman (1987) gave their participants a 

passage describing the Law of Large Numbers and provided several example applications, and 

found some improvements in statistical reasoning relative to a control group.  However, the authors 

found that participants often did not successfully transfer sample size reasoning beyond the 

teaching context, and other researchers have criticized the authors’ arbitrary scoring scheme for 

statistical reasoning (Sedlmeier, 1999).  Sedlmeier (1999) created activities based on instructional 

design principles that used rich computer simulations where participants could experience the 

process of sampling, viewing individual samples, and viewing the sampling distribution for 

different problems. Sedlmeier’s participants showed a sustained improvement in sample size 

reasoning across multiple tasks; however, the training and transfer tasks were all isomorphic to the 

Hospital problem so it is not clear how well thinking would transfer to other tasks.  
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In a similar series of simulation-based intervention studies targeting introductory statistics 

students’ understanding of sampling distributions by delMas and colleagues (Chance et al., 2004; 

delMas et al., 1999), students created empirical sampling distribution histograms based on a given 

population histogram. When combined with a classical conceptual change approach (Posner, 

Strike, Hewson, & Gertzog, 1982) that confronted students with their misconceptions after the 

pretest, this intervention appeared to be quite successful at encouraging most participants to choose 

histograms with smaller variability for larger sample sizes (delMas et al., 1999). However, 

qualitative follow-up interviews revealed that students’ reasoning was often confused even when 

they chose correct histograms (Chance et al., 2004). Additionally, an unpublished follow-up study 

revealed that students still performed poorly on several classic sample size tasks after the 

histogram-based intervention (delMas, Garfield, & Chance, 2006). 

How can people learn to change their incorrect reasoning to correct reasoning? The 

Knowledge Revisions Components (KReC) Framework (Kendeou & O’Brien, 2014), drawn from 

extensive experiments on reading comprehension and refutation texts (e.g., Kendeou, Smith, & 

O’Brien, 2013), suggests that activating old and new information and strengthening the new 

information with causal explanations is an effective way of revising knowledge. Since the effect of 

sample size on sampling variability is a phenomenon that results from taking the mean of a random 

process, the causal explanation is not straightforward. Chi (2013) terms these processes emergent 

and her research suggests that understanding the inter-level process of summing the individual 

values at the local level (e.g. the individual cases in the sample) to produce the effect at the 

aggregate level (e.g. the sampling variability of the mean) is particularly crucial for being able to 

generate correct causal explanations. No interventions were found in our review that provided a 

causal explanation, inter-level or otherwise, of the effect of sample size on sampling variability. 

 

CAUSALLY EXPLAINING THE EFFECT OF SAMPLE SIZE 

In contrast to prior interventions that only supported students in noticing and applying the 

effect of sample size on sampling variability, we developed a new hypothetical learning trajectory 

(HLT) to scaffold two inter-level causal explanations of the reduction in sampling variability as 

sample size grows:  

• swamping, the decreasing influence of extreme values on the sample mean 

• heaping, the increasing concentration of possible sample means near the population mean 

Swamping, demonstrated in Figure 1, explains how a particular sample mean will move 

less and less as more values are added to the sample. This property follows directly from the 

formula for the mean and does not depend on stochastic processes: means are the sum of the values 

divided by the number of observations, so any given observation will be divided by a larger 

number for larger samples and will therefore have less influence. The term swamping was coined 

in Well et al. (1990) based on student observations of this property. However, by itself swamping 

only explains the decreasing size of movements of the mean relative to a deviation and does not 

directly explain either the decrease in variability or the increasing concentration around the 

population mean. For example, it is quite possible for a process to have decreasing possible 

movements without converging to any particular value, such as the harmonic series (1 + ½ + 1/3 + 

…), which never converges. 

Heaping, demonstrated in Figure 2, provides a more complete explanation of the effect of 

sample size. Viewed from the Laplacian perspective of a sample space with equally likely 

outcomes, there is an increasing proportion of possible outcomes near µ in the sampling 

distribution as sample size increases (Kazak & Konold, 2010). Figure 2 applies this logic to the 

sampling distribution of a Bernoulli random variable with  = 0.5, which models a coin flip game 

where heads are scored as 1 and tails scored as 0, and the average score is recorded. When the 

sample size is 2, there are two ways to get an average score of 0.5. As the sample size increases, 

heaping can be observed: there are increasingly more ways of getting an average score close to 

population mean, and therefore sample means increasingly “heap” around the true mean. 
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Figure 1. Demonstration of swamping (Well et al., 1990), showing how large samples are less 

influenced by extreme values than small samples, created by a pilot participant using TinkerPlots 

(Konold & Miller, 2017).  

 

 With support, the participant a) created a model that randomly picks one of several balls 

repeatedly, then (b) viewed a mean against sample size (MASS) plot to show that the mean 

changes rapidly at first but moves less and less as the sample size grows. 

 

Figure 2. Demonstration of heaping (e.g., Konold & Kazak, 2008), showing how means of large 

samples have more opportunities to be near the true mean than small samples.  

 

The examples in Figure 2 depict the results of repeatedly drawing 0 or 1 with equal 

probability four times and then recording the mean. Participants first create a model that a) 

generates 100 means. Participants then b) examine unique combinations of outcomes and note that 

there are more ways to get an outcome near 0.5 because there are more possible samples near that 

value. Participants further explore the underlying combinations using c) hands on manipulatives 

and d) a custom application. 

The HLT to support swamping and heaping consists of a sequence of tasks that provide 

increasingly rich conceptual support for causal thinking about sample size. Students first explore 

swamping in the context of a sample proportion or mean as sample size grows (Bakker, 2004). 

These activities support students in growing a sample and describing the effect of sample size on 

sampling variability. Students visually create random models (Figure 1a) in TinkerPlots (Konold & 

Miller, 2017) that incrementally add values onto a sample and witness how the mean, initially quite 

unstable, begins to settle down near an expected value as viewed in the mean against sample size 

(MASS) plot (Figure 1b) to support their understanding of the mechanism of swamping. 
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Students explore heaping in the last three activities by growing multiple samples 

simultaneously and plotting the means (Figure 2a). They then explore the underlying mechanism 

by examining the unique outcomes that arise in their simulations, and noting that there are more 

possible outcomes near the mean (Figure 2b). Finally, students connect the simulations with the 

underlying structure, first by a hands-on exploration constructing the different combinations using 

building blocks (Figure 2c) and then with a custom-built application for displaying all possible 

combinations of outcomes (Figure 2d). 

Although the basic structure of the HLT is compatible with the literature on sample size 

and sampling distributions, we were not able to find much previous literature on how to support 

student understanding of swamping or heaping. To support comparisons with existing research, 

these activities are bracketed by pre- and post-interviews with students as they solve classic sample 

size problems to examine the nature of changes in their thinking while working through well-

studied problems. 

 

PILOT TESTING OF THE HLT 

We conducted an initial pilot test of five students who had recently completed the 

CATALST course (Garfield, delMas, & Zieffler, 2012), a randomization-based introductory 

statistics course which uses TinkerPlots extensively. The purpose of the pilot test was 1) to assess 

how richly the HLT revealed students’ thinking about sample size, 2) to assess whether the HLT 

appeared to be successful in encouraging causal thinking about sampling variability, and 3) to 

improve the tasks, representations, and prompts. Since our focus was on revealing and exploring 

student thinking, we engaged pilot test participants in semi-structured clinical interviews with a 

focus on understanding participants’ sense-making in the contexts and representations we provided 

(diSessa, 2007). There were no explicit instructional materials provided, and the interview protocol 

took pains to ensure that that the interviewer’s role was to explore student thinking, not to teach or 

evaluate. 

We were interested in how students causally reasoned and how students used 

representations to support their reasoning. For instance, after students had spent a half-hour with 

the MASS plot, four of the five pilot participants described swamping in some form without much 

prompting. Although students initially varied on whether they thought sample size would have any 

effect on sampling variability in the pre-interview, after seeing the MASS plot they were usually 

able to articulate swamping, e.g. “the smaller the sample is, the greater it can be skewed in 

proportion with just a few … repeated results.” However, one participant (P5) used non-inter-level 

reasoning to explain why the changes in the mean were smaller at larger sample sizes. Here is the 

participant’s reasoning about the MASS plot for a sampler with one 0 and two 1s: 

P5: We're looking at changes of, like, 0.3, 0.2, 0.2, so, like, the change, like, keeps getting bigger 

and bigger than when we go here, we have changes of 0.01 and as we get lower we get a 

change of 0.001 and as you go lower we have a change of 0.001 and it just keeps getting. So, 

like, the change keeps getting smaller and smaller as the sample size keeps getting bigger and 

bigger. 

I: Okay, and so why—why do you think that would be? 

P5: Um, I think it's because, like, since we're dealing with a huge sample size and that the number 

is gonna be centered more closer to 0.67, it's not gonna change that much from it. Okay, then 

that's why our number is like very, very, very low.  

Instead of arguing from swamping, P5 argues teleologically that large samples should 

match the theoretical probability. They mentioned earlier that “we were to do like, like, like do 

those drawings and have like a huge sample size then our proportion should match like what it 

should theoretically be.” Only after a lot of focused prompting about the effect of extreme values 

did P5 eventually offer swamping-like reasoning. 

Many students were able to express heaping after looking at the combination plots and 

constructing combinations themselves. However, students’ explanations of heaping tended to be 

more tentative. Here is one participant explaining heaping for three draws of a 0/1 variable: 

P3: To equal—to get the average of this probability, this one—this one—this one in this, okay. So 

there are two up there, three options—there are three different orders that resulted in the same 

average, 1, 2, 3, all in this average. So, so, every combination is equally unlikely, but some of 
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the combinations result in the same mean, which means that this is statistically higher chance 

of getting certain means given the true—or given the different combinations that result in the 

median. 

In the post-interview questions, participants rarely used heaping-style reasoning during 

problem solving.  However, they frequently referred to the building block exploration of heaping as 

striking and memorable when asked to reflect on what they learned and what surprised them about 

the HLT: 

P3: I guess I'm still, like, processing, like, with the combination thing. I'm thinking about that, 

that's still on my—on my mind. Um, I guess what we saw there is the—the more number the 

you drew, the more combinations and the more stacks you have... there's only... [trails off] 

P4: I think the [building block] activity definitely surprised me, just because seeing how the graph 

changed and taking into account different ways that you could get the same average. So, like, 

having like two blacks and one white, or, like, black black white, or, like, black white black, 

and how that affected the numbers was surprising to me. 

At the end of the HLT, these two participants (whom we judged, out of the five 

participants, to have the strongest understanding of the tasks) were still struggling with articulating 

and thinking about heaping. 

 

DISCUSSION AND CONCLUSION 

 Giving students an opportunity to causally explore the effect of sample size on sampling 

variability may be a powerful teaching tool. The HLT presented here provides a first attempt to 

explore the pedagogical possibilities of highlighting swamping, the decreasing influence of 

extreme values on larger samples, and heaping, the piling up of possible samples near the true 

mean. Pilot testing has shown the potential depth of student thinking about swamping and heaping, 

but also demonstrated the difficulty of designing effective interventions. Plotting means of samples 

against the sample size in rich, well-motivated contexts appears to support understanding of 

swamping, but understanding of heaping was very tentative even in the strongest students. In both 

cases, however, the tasks and representations appeared to be successful in revealing complex and 

previously undocumented student reasoning about sample size. 

It is not entirely surprising that swamping came more easily to students, given that it was 

one of the major correct reasoning types used by college students in Well et al. (1990). Swamping 

is a relatively simple property of means. Nevertheless, the MASS plot appeared to successfully 

highlight the decreasing influence of extreme values. Students’ expressions of swamping had a 

variety of nuances that can be examined in follow-up research. For instance, some students seemed 

to focus more on extreme values, while others talked about how a “streak” of a certain value would 

affect the mean less at a larger sample size, how it would take a smaller absolute number to change 

the mean at a lower sample size, or how the equation for the mean implies swamping. 

Heaping may be easier to understand in some contexts than others. One student initially 

gave heaping-like reasoning about the extremes of the sampling distribution of coin flips, arguing 

that it was much easier to get all heads for a smaller number of flips rather than for a larger 

number. Students were asked in the post-interview how heaping connected to a problem about a 

continuous distribution and a problem about a coin flip, and one student who saw no connection to 

the continuous distribution easily drew a correct connection to the coin flip situation. Further 

research will explore the potential of these activities by iterating the HLT over a larger sample of 

students and continuing to refine and improve the materials and prompts to isolate and clarify 

students’ thinking. 
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