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Simulation-based methods have become increasingly popular as a way to introduce students to the 

core ideas of statistical inference.  Yet most advocates of this approach still recognize the need for 

students to also be exposed to traditional, formula-based methods based on normal and t-

distributions.  As we have gained experience with building basic intuitions for inference through 

simulations, we have also refined methods to extend those ideas to make the connections to 

learning traditional methods easier and more efficient.  We explore how these methods help 

students translate the “big picture” ideas of simulation, that apply to many parameter situations, to 

see the common structures of traditional methods. 

 

INTRODUCTION 

George Cobb, in his plenary address at the first United States Conference on Teaching 

Statistics (USCOTS 2005) and later paper in the first issue of TISE, Cobb (2007), challenged the 

statistics education community to move away from introducing the core ideas of statistical 

inference using traditional normal and t-based procedures.  Instead he advocated using 

randomization-based procedures that are computer-intensive but make a stronger, more accessible 

connection for students to the reasoning behind statistical inference.  In the often-quoted lines from 

Cobb’s TISE abstract, “Before computers statisticians had no choice. These days we have no 

excuse. Randomization-based inference makes a direct connection between data production and the 

logic of inference that deserves to be at the core of every introductory course.” 

Several textbooks and curriculum projects have been developed to try to implement Cobb’s 

ideas under the general heading of simulation-based inference (SBI).  Some of the first include 

Lock5 (2013), Tintle, et al (2016), Tabor & Franklin (2011), the University of Minnesota’s 

CATALST Project (Zieffler, et al, 2012), and the OpenIntro project (Dietz, et al 2014).  The 

Simulation Based Inference Blog (https://www.causeweb.org/sbi/) is a good place to find other 

resources, discussions, and tips for using this approach.  In what follows we discuss making the 

transition from these SBI methods to the more traditional formulas and standard distributions. 

 

ASSUMPTIONS 

As the projects above indicate, there are many ways to incorporate simulation-based 

methods into an introductory statistics course.  We start with a few assumptions to set the stage for 

our discussion of the transition: 

1. We start with simulation-based inference.  We won’t go into the arguments for this 

approach here but assume that this happens relatively early in the course and is the students 

first exposure to the ideas of inference.  

2. We cover lots of parameter situations.  One of the advantages of SBI is that the procedures 

are very general and can easily be adapted and applied to different parameters (means, 

proportions, differences, slope, …).  Students will see bell-shaped bootstrap and 

randomization distributions in lots of different settings before we give those common 

shapes a formal name. 

3. We want students (eventually) to see traditional methods.  We recognize that students may 

be going to go on to other courses (e.g. research methods in a discipline), use standard 

statistical software, or read journal articles that use procedures based on normal and t-

distribution approximations.  Also, while SBI’s avoidance of algebraic manipulations is a 

plus for many groups of students, some more formula-friendly students can gain insights 

into how factors (such as sample size) affect the inference process from the more 

traditional approaches. 
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4. We need good software to make the SBI procedures accessible to students.  We have 

developed the freely available StatKey web apps (http://lock5stat.com/statkey) for this 

purpose.  Another good option is the Rossman/Chance Applet Collection 

(http://www.rossmanchance.com/applets/).  Some traditional statistical software packages 

(e.g. R, JMP, Minitab Express) have made great strides in adding accessible SBI facilities.  

 

EXAMPLES 

Before discussing transitions, we offer two examples that illustrate the SBI approach and 

will extend to demonstrate moving to traditional methods. 

 

Example #1: Online dating app use for 18-24 year olds (bootstrap confidence interval for p) 

What proportion of 18-24 year olds in the US have used on online dating app?  A Pew 

survey (Smith, 2016) showed that 53 of 194 young adults had used on online dating service or 

mobile app.  This gives a sample proportion of 𝑝̂ =
53

194
= 0.273.  Let’s find a 95% confidence 

interval for the proportion of all US adults in this age category who have used online dating apps.  

We construct bootstrap proportions by sampling 194 people with replacement from the 

original sample of young adults and finding the proportion with online dating experience in each 

bootstrap sample.  Repeating this process for 10,000 bootstrap samples using StatKey gives the 

distribution shown in Figure 1.  We then have two ways to obtain a confidence interval from the 

bootstrap proportions. 

 

Standard error method: For a roughly 95% interval, estimate the standard error (SE) as the 

standard deviation of the bootstrap proportions in Figure 1, then add and subtract two times this 

value from the original sample proportion.  

𝑝̂ ± 2𝑆𝐸 = 0.273 ± 2 ⋅ 0.032 = 0.273 ± 0.064 = (0.209 to 0.337) 

 

Percentile method: Find the endpoints that give the middle 95% of the bootstrap distributions.  

From Figure 1 we see these go from 0.211 to 0.335.  

 

 
 

Figure 1. Bootstrap distribution of proportions of young adults using dating apps 
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Example #2: Does mind-set matter? (randomization test for a difference in means) 

In an experiment (Crum & Langer, 2007) 41 female hotel maids (randomly chosen) were 

informed that the work they did qualified as an active lifestyle, with examples of tasks that 

qualified as good exercise.  A different randomly chosen group of 34 maids were left uninformed 

about these facts.  Weight loss was recorded for all participants over a four-week period.  The 

informed group had an average weight loss of 𝑥̅1 = 1.79 pounds (𝑠1 = 2.88) and the uninformed 

group lost an average of 𝑥̅2 = 0.20 pounds (𝑠2 = 2.32). This gives a sample difference of 𝑥̅1 −
𝑥̅2 = 1.59 pounds in favor of the informed group. We want to test a null hypothesis that the 

population means are the same (𝐻0: 𝜇1 = 𝜇2) versus an alternative that the mean loss is larger for 

maids that are informed about the healthful benefits of their work (𝐻𝑎: 𝜇1 > 𝜇2).  

To do a randomization approach we scramble the 75 weight losses, re-assign them at 

random, 41 to the Informed group and the other 34 to the Uninformed group, then find the 

difference in means for the randomization sample.  Repeating this process 10,000 times gives the 

plot shown in Figure 2.  To estimate the p-value we count how many of the simulated samples had 

a difference in means as large as the 1.59 for the original sample.  In the distribution below, that 

happened 47 out of the 10,000 samples to give a p-value of 0.0047, strong evidence that the mean 

weight loss is higher for maids who are informed of the exercise benefits of their job. 

 
Figure 2. Randomization distribution for differences in mean weight loss 

 

MAKING THE TRANSITION  

 

Step #1: Introduce the normal distribution  

Throughout the SBI material, students have been seeing lots of bell-shaped bootstrap and 

randomization distributions, so we introduce the idea of a normal curve to summarize that shape.  

They know that the bootstrap distribution should be centered at the value of the original statistic 

and the mean of a randomization distribution is determined by the null hypothesis.  For the 

standard deviation of the normal, they can use the standard error as found in the bootstrap or 

randomization distributions.  Thus for our two examples we have 𝑝̂ ≈ 𝑁(0.273,0.032) for the 

proportions of young adults using online dating and 𝑥̅1 − 𝑥̅2 ≈ 𝑁(0,0.638) under 𝐻0 for the 

differences in mean weight losses.  These are shown in Figure 3 along with the endpoints and areas 

that give the confidence interval and p-value.  Note that these use the same process as the SBI 

methods, only substituting smooth curves for simulation dotplots and areas for counting 

proportions of dots in the tails.  The confidence interval is very close to the bootstrap and the p-

value leads to a similar strength of evidence.  
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Figure 3. Normal distributions to approximate Figures 1 and 2 

 

Step #2: Standardize 

While it may be convenient to initially work in the scale of the original data, we often 

prefer to move to a standard N(0,1) scale.  This eliminates the need to specify a mean and standard 

deviation to reset the software for each new example (not a major task) but also helps students get 

some intuition on what is likely to occur even before they go to software.  The two key 

standardization formulas are  

 

Confidence interval:   

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ± 𝑧∗ ⋅ 𝑆𝐸 

 

Hypothesis test: 

𝑧 =
𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝑁𝑢𝑙𝑙

𝑆𝐸
 

 

The 𝑧∗ for the confidence interval comes from finding the N(0,1) endpoints that give the 

desired confidence level in the middle. The p-value is found as the N(0,1) area beyond the z-

statistic (depending, as in the randomization, on the “tail” of the alternative hypothesis).  At this 

stage we still use the SE as found from the bootstrap or randomization distribution (but that is 

about to change in Step #3).  

For our online dating app example, we have 0.273 ± 1.96 ⋅ 0.028 = (0.210 to 0.336), 

matching (of course) the result of Step #1.  Now students have reinforcement for where the “2” 

comes from in the original standard error method and have an easy way to extend that method to 

other confidence levels – just find the right 𝑧∗ multiplier to replace the “2”.  

For the mind-set matters example, we have 𝑧 =
1.59−0

0.638
= 2.49 which gives an upper tail p-

value from N(0,1) equal to 0.0063 (again matching Step #1).  Since all the z-statistic is doing is 

measuring how many SE’s the sample statistic is from the null parameter, students quickly get a 

feel that z-values beyond 2 or 3 (in magnitude) are likely to provide significant evidence against the 

null while values near one or smaller are unlikely to do so.  

 

Step #3: Use a formula for the standard error 

So far we really haven’t gained much over using just SBI techniques.  If we have to 

construct 1,000’s of bootstrap or randomization samples to estimate the SE for the normal 

distribution or standardization, why not just find the confidence interval or p-value directly from 

that simulated distribution?  Of course, instructors know the answer – for many of the standard 

parameter situations statisticians have derived formulas which can be used to estimate the standard 

error from basic summary statistics without needing any simulations. That is the key to the final 

step.  

N(0.412,0.028) 
N(0,0.638) 
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We actually need to keep track of two questions to implement the traditional method.  

What is the formula for estimating the standard error? What are the conditions needed to justify 

using a standard distribution?  Let’s see how these work for our two examples. 

For the confidence interval for the proportion of young adults using online dating apps, the 

relevant formula for the standard error of the sample proportion is  

𝑆𝐸 = √
𝑝̂(1 − 𝑝̂)

𝑛
 

and the distribution will be reasonably normal if the sample size is large. One easy condition for 

“large” is that the sample has a least ten cases with “yes” and at least ten with “no” which is clearly 

met for that sample.  This gives the “usual” interval 

𝑝̂ ± 𝑧∗√
𝑝̂(1 − 𝑝̂)

𝑛
= 0.273 ± 1.96√

0.273(1 − 0.273)

194
= 0.273 ± 1.96 ⋅ 0.032 = (0.210, 0.336) 

While we don’t derive the formula for SE, students can easily verify that the result is 

similar to what is found from a bootstrap distribution. 

For the test of difference in two means with the informed/uninformed data we have  

𝑆𝐸 = √
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
= √

2.882

41
+

2.322

34
= 0.601 

and we also introduce the t-distribution as an alternative to the normal when we are using standard 

deviations from the samples in this formula to estimate the standard error.  Since these samples are 

relatively small, we also check that the two samples are relatively symmetric and don’t have any 

big outliers. Computing the t-statistic we have  

𝑡 =
𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝑁𝑢𝑙𝑙

𝑆𝐸
=

𝑥̅1 − 𝑥̅2 − 0

𝑆𝐸
=

1.79 − 0.20

0.601
=

1.59

0.601
= 2.65 

Using the upper tail of a t-distribution with 33 degrees of freedom (we use the conservative 

“smaller of the df for the two samples” rule) we have a p-value of 0.0062.   The p-value and 

conclusion are similar to the previous work with this example.  

 

OBSERVATIONS 

We are only using the normal distribution as a tool to approximate the familiar bell shape 

that students have seen in lots of bootstrap and randomization distributions.  They already have 

plenty of experience finding endpoints and tail proportions for such curves, although in the more 

concrete setting of counting dots rather than finding areas.  Using technology such as StatKey, that 

presents an intentionally similar interface for dealing with the simulation and theoretical 

distributions, making that part of the transition very easy for students.  They have a much easier 

time working with the normal distribution than in pre-SBI days when normal calculations were the 

starting point (and even worse when such calculations were done with paper tables).  

Some instructors worry that students will get confused or overloaded if we are showing 

them multiple ways to solve the same problem. Wouldn’t it be better to just go straight to the final 

formula and skip the middle steps?  Unfortunately, many students are not as enamored or 

comfortable with algebraic manipulations of formulas as their instructors.  That’s one of the main 

advantages of using SBI to introduce the ideas of inference in a general framework that does not 

rely so heavily on formulas and mathematical machinery.  We have found that the three steps 

outlined above help students make the transition to formulas and, as they become comfortable with 

the process they can skip the first two steps.  Once they have the general structures of 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ±
(𝑧∗ 𝑜𝑟 𝑡∗) ⋅ 𝑆𝐸 and (𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝑁𝑢𝑙𝑙)/𝑆𝐸  they can easily move to a new parameter situation by 

getting a new formula for the SE and knowing the proper reference distribution.  

Instructors also worry about adding SBI methods to a course, while still covering 

traditional methods in a curriculum that is almost always too full to begin with.  We have found 

that this is not as big an issue as one might expect.  Students have already grappled with many of 

the important ideas of inference (e.g. how to interpret a confidence interval, how to set up 
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hypotheses, what a p-value measures and how to use it to interpret the results of a hypothesis test in 

context) during the SBI portion.  When going through the traditional methods the main new ideas 

are the short formulas that let us estimate SE without needing thousands of simulations.  We have 

been pleasantly surprised at how much quicker the traditional methods go when we aren’t having 

students trying to learn the important ideas of inference at the same time they are trying to deal 

with these different formulas. 

In most introductory courses we don’t (and shouldn’t) provide enough mathematical 

machinery to derive the formulas for various standard errors.  Having experience with SBI allows 

students to at least verify that the results of the formula are roughly consistent with what they 

observe from simulations.  

Consider the case of a single proportion.  For a confidence interval we use 𝑆𝐸 = √
𝑝(1−𝑝̂)

𝑛
 

but for a test of 𝐻0: 𝑝 = 𝑝𝑜 we use 𝑆𝐸 = √
𝑝0(1−𝑝0)

𝑛
 and students wonder why the difference?  After 

SBI the explanation is easy since the confidence interval is coming from a bootstrap distribution 

which students know is centered at the sample statistic, 𝑝̂, while the test deals with a randomization 

distribution which is centered around the null hypotheses, 𝑝0.  Since the purpose of the normal 

curve is to approximate either the bootstrap or randomization distribution, it makes sense that the 

proportion used to find the SE should be the one from the center of the simulation distribution.  

Although we have interspersed the examples for confidence intervals and hypothesis tests 

in this paper, in practice with our students, we focus on one type (hypothesis tests first) and then do 

the other.  In earlier iterations we discussed the normal distribution (finding areas, endpoints and 

standardization) abstractly and then jumped to the application to confidence intervals and tests.  We 

found that students had more trouble making the connections and that the transition goes more 

seamlessly if we step through using the normal distribution to approximate the simulation 

distribution in the respective settings. 

 

CONCLUSION 

We agree with Cobb that simulation-based methods establish ties to the logic of statistical 

inference that improve understanding for students.  Furthermore, using these methods as the 

starting point for inference paves the way for students to later more easily extend those important 

ideas to the more formula-driven, but still very common, traditional methods.  
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