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This research characterizes recurrent forms of teacher assistance in a sixth-grade class as students 

invented and revised models. The primary focus is on how the teacher supported students to construct 

an image of repeated process and to subsequently employ this understanding as a guide to 

considering model fit and criteria for good models. Sources of data include field notes and video 

recordings of whole-class and small-group conversations. The analytic approach employs methods 

of constant comparison but is also informed by findings from end-of-year interviews with students. 

 

BACKGROUND 

One goal of statistics education is to support students to understand how inferences can be 

made in light of variability. However, formal approaches to statistical inference require 

understandings of probability density functions that are typically outside the scope of K-12 

mathematics education. Instead of relying on these formal approaches, we take a model-based, 

informal inference approach in which we engage students in constructing and revising models of 

chance to guide inferences about various phenomena.  

This research builds on a data modeling perspective that positions students as participants in 

approximations of professional practices, especially those of visualizing, measuring, and modeling 

variability (Lehrer, Kim, & Schauble, 2007). These professional practices steer inference under 

conditions of uncertainty. In this research, prior to the focal lessons that we analyze in this paper, a 

class of sixth grade students (age 11) measured the perimeter of the same table with two different 

measuring instruments (a 15 cm ruler and a cm tape measure). Then they invented data 

representations of their measurement data. Comparing and critiquing a variety of invented displays, 

students came to appreciate how inventors’ representational choices revealed and obscured shape 

and pattern in the data. Students went on to invent measures of these data’s center (i.e., best guess of 

true table perimeter) and variability (i.e., precision or tendency of the measures to agree). Students 

compared data representations and measures of data for each measurement tool with an eye toward 

considering how change in the measurement process (i.e., the change in the measurement tool) 

produced changes in the shape and measures of the data. They also considered whether their 

inventions were robust to other changes in data that they could imagine (e.g., an occasional outlier, 

a change in sample size). With practices of visualizing and measuring characteristics of data in hand, 

students examined behaviors of simple random devices (e.g., a hand-held spinner), investigating how 

varying either the structure of a device or the sample size influenced the distribution of repeated 

outcomes. They also investigated the sampling distribution of sample statistics (e.g., percent red of 

a two-color, red-blue spinner).  

With these preambles in mind, this paper focuses on the next phase of the instructional 

sequence, where students used TinkerPlots, a digital data visualization and modeling software 

(Konold & Miller, 2005), to construct models of chance processes, and used these models to answer 

a question or make inferences about various phenomena, other than the random devices themselves. 

The modeling sequence was as follows: First, students constructed models to estimate compound 

probability in standard textbook probability problems (e.g., basketball free throws, games of chance). 

Next, students constructed models to account for variability in an observed sample in contexts of 

signal and noise (e.g., their class’s table measurement data or the production of a batch of cookies). 

Students judged model fit based on a sampling distribution of a model statistics and made inferences 

about claims of changes to processes of measuring (e.g., same or different object measured) and of 

producing (e.g., change in production method). The instruction concluded with student invention of 

models of natural variability in contexts of a psychophysics experiment about visual illusion and of 

plant growth at different initial days of planting. Here students used their models to warrant claims 

about whether differences between conditions could be ascribed to chance. Although we do not focus 

on it here, the contexts varied in the visibility of the variability-generating processes.  

Although students had many opportunities to invent and revise models of chance during this 
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instruction, we observed that these opportunities were significantly enhanced by teacher practices. 

Following the view that teaching consists in assisting performance (Tharp & Gallimore, 1988), we 

describe some of the conceptual challenges faced by students, and how the teacher helped them 

respond to these challenges during the course of instruction. Sources of data include field notes and 

video records of whole-class and small-group interactions involving the teacher. The analytic 

approach employs methods of constant comparison but is also informed by findings from end-of-

year interviews with students (Lehrer, 2017). These interviews revealed that most students had 

developed a hierarchical image of sample—seeing samples as constructed and as constituted by 

individual cases that vary, while simultaneously seeing samples as members of an imagined 

collection of samples that also vary (Saldanha & Thompson, 2014). Hence, here we focus on teacher 

practices that appeared to support student construction of this statistical image of sample. We 

examined video of classroom activity during all 16 lessons and developed a comprehensive 

description of how the teacher helped induct students into the practice of modeling variability, but 

in this presentation, we targeted initial and later forms of teacher support for students’ conceiving of 

stochastic process as an explanation of sample variability and of sampling variability. Although such 

support recurred throughout all 16 lessons, in this paper we illustrate initial forms of teacher 

assistance that focused student attention on the role of repeated process in estimating probability and 

then illustrate later forms of assistance that expanded students’ reach to encompass stochastic process 

as a conceptual tool for considering model fit and for developing model aesthetics (e.g., the grounds 

for deciding whether a particular model was “good”). 

 

FINDINGS 

Supporting construction of an image of repeated process 

Students first (Lesson 1) constructed models to estimate the probability that an opponent 

basketball player with a history of free-throw percentage of 50 would miss all three shots when her 

team was one point behind at the very end of the game and lose the game. Students’ initial modeling 

attempts often followed the story line of the problem context (Noll, Clement, Dolor, & Peterson, 

2017), so they constructed models that would simulate one game: 

Teacher: So tell me what you did. 

Sean: We made 3 spinners for the 3 shots. And then we halve them, because she makes half 

the shots. And then miss and hit on all of them. And then we repeated it once, so draw 

3. And she won the game because she got one hit. 

In this excerpt, Sean followed the story line and made explicit the mapping between model 

components (e.g., “we halve them”) and corresponding world entities (e.g., “she makes half the 

shots” [over the year]). Sean also interpreted the outcome of this simulated game (i.e., “she got one 

hit”) in the context of the game situation (i.e., “she won”). At this point, many students seemed to 

have taken the modeling task to be configuring random devices to simulate one game of basketball. 

None of the pairs that the teacher talked with (about half of the class) as she roved the classroom 

spontaneously used their model to generate more than one game at a time. In response, the teacher 

gently prompted them to model a collection of games rather than a single game: 

Teacher: So that one was a miss-make-make, so you didn’t win the game. But that’s just totally 

one time it happened, we want to know the probability of it happening anytime, so what 

could we do? 

Carson: You could turn the repeat higher. 

By asking students to think beyond what happened “just totally one time” to what happened 

“anytime,” the teacher was linking one individual outcome to the long run, and was establishing a 

shared goal that what “we want to know” was not what happened each time, but what happened over 

time. In doing so, the teacher also extended the role of students’ model, from a representation of the 

situation, to a data-generating tool that students could use to generate data that helped them know 

something they did not know before.  

Even with this prompting, students tended to simulate a relatively small number of games, 

and the teacher seized this opportunity to highlight sample-to-sample variation: 
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Teacher: Okay, so what do we want to do? 

McKinley: Maybe [repeat] 20? 

Teacher: Okay, so let’s see what happens there? … Oh, you got one [miss-miss-miss]. You see 

it? Okay, so what percent of the time did that happen? 

Students: 1 out of 20, 5% 

Teacher: 5? What do you think would happen if you change or you do it again? 

Carson: You might have more or you might have less. Probably more.  

Teacher: Let’s try it.  

Carson: This time it has 1, 2, 3. So that’s 15.  

Teacher: Okay. So 5 to 15%, that’s a big jump, huh? So how can you narrow in on the 

((gesturing two fingers closing in)), closer to the theoretical? 

McKinley: Maybe do more than 20? 

The teacher routinely asked students to rerun their model, and here, in doing so, the teacher treated 

20 games as a collection, whose collection process could be repeated, and now the repeated process 

was extended to include repeated samples (here, of 20 simulated games). By asking students to rerun 

their model, the teacher also produced sample-to-sample variation for students to see, and in the 

above episode, she highlighted it as “a big jump.” At this early point, another approach to coping 

with sample-to-sample variability was to ignore it. Students wanted to only attend to the sample 

outcome that matched their expectations, rooting for the model to produce such sample outcome 

(around 12-13% miss-miss-miss in this case). The teacher pressed very hard for students to pay 

attention to the variation and to justify how we could know the answer given this variation between 

samples (of 100 simulated games): 

Students: Oooh, 12, exactly 

Teacher: So now they got 12% [miss-miss-miss], how do they know that’s what they’re really 

looking for? … What could they do? 

Model: The model was rerun, and in the new sample, miss-miss-miss went up to 19%. 

Student: Oh man.  

Teacher: Oh woah, did they just?  

RL: Just ran it again?  

Teacher: Now it’s on 19%. So which one’s right? 

Students: 12.5! 

Teacher: You don’t know it’s 12 … How do you know? 

Sean: Run it once more.  

Teacher: Once more?  

Sean: Yes because it will see which is closer. 

Model: The model was rerun, and in the new sample, miss-miss-miss was 13%. 

Students: 13! 

Student: Do it again. 

Teacher: So Sean said run it again, and the third time will tell us. Is it going to be the third time 

that tells us every time? 

Sean: No, not every time, but if you want to do it quickly.  

Similar to focusing on one game at a time earlier, students now focused on one sample at a time. 

They were excited when an individual sample outcome matched their expectation (e.g., “13!”), and 

disappointed when it did not (e.g., “oh man”). Faced with sample-to-sample variation, while having 

to make a decision about a good estimate for empirical probability, one student suggested that “the 

third time” was as good as any other time. To counter this tendency to ignore the long run, the teacher 

often suggested collecting a large number of samples:  

Teacher: Well, Elijah, how many times do you want to do it, just one more time, again, and 

again, and again, and again? 

Elijah: No, probably like 10. 

Teacher: So could we just maybe collect it? 

Sean: Maybe we could just collect it 10 times.  

Teacher: Okay before you collect a bunch of them, so right now, we are just collecting this 
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((pointing at the miss-miss-miss stack)), and we had a 12, a 19, and a 13. What shape 

when we collect, we’re gonna collect 300 of them, I want you to talk to your neighbor, 

what do you think the shape of that graph will be, where do you think the middle, or the 

center, or the clump, all those things, where do you think those will be? 

The teacher revoiced what students had been saying—“do it, just one more time”—with an added 

emphasis on an image of long-term repeated process—“again and again, and again, and again.” By 

asking “how many times” to run again, the teacher prompted students to think about a collection of 

samples. Students suggested a collection of 10 samples, which the teacher quickly extended to 300, 

a relatively large number of samples. The teacher again highlighted the sample-to-sample variation 

in outcomes that the class just witnessed together: “a 12, a 19, and a 13,” and then asked students to 

anticipate the aggregate structure of a collection of sample outcomes. While in this first lesson, the 

teacher suggested collecting many samples in order to emphasize variability, in later lessons, she 

often asked students to justify why they might want to collect a large number of samples: 

Teacher: Okay. So, thumbs up, thumbs down, do you want me to collect 100 [samples]?  

Students: Yes 

Teacher: What’s that gonna tell me? I’m not going to run unless you can tell me what it’s gonna 

help me know. 

Gideon: You can see what happens at many different times. 

Sean: If she did this over and over again, what would be the results of that. 

By pressing for student justification for “what it’s gonna help me know,” the teacher positioned 

collecting sample statistics as an epistemic tool, as it became a means to know something they did 

not know at the moment.  

We have described how the teacher initially supported attention to repeated process, a 

process that had to be imagined by students in the textbook-like problems on compound probability 

they initially modeled. Now we describe how in later lessons the teacher and students constructed 

and appealed to repeated stochastic process to consider model fit and aesthetics of “good” models.  

 

Evaluating model fit 

Model evaluation and revision require criteria for model fit. As we noted, students initially 

evaluated model fit based on a few instances of correspondence between empirical and simulated 

sample statistics or between empirical and simulated case values. But the teacher continued to 

emphasize a repeated process, often pressing students to consider what would happen if they ran 

their model again, as a way to allude to sample-to-sample variation, and then to motivate using a 

model-generated sampling distribution for judging model fit. For example, in Lessons 11-12, 

students were challenged to construct a model of a psychophysics experiment. In this experiment, 

participants estimated the location of the midpoint of a horizontal line under three different 

conditions, two of which were designed to create illusions that would bias student estimates. Students 

first explored their class’s data for the unbiased no-illusion condition, locating the center (median) 

and measuring the variability (IQR) of their estimates. Isaac and Dean (below) had spent some time 

constructing and revising a model to account for the center and variability of the sample, and when 

the teacher started talking with them, they were at a point where their model had generated a sample 

“with a median that agrees with [the observed] median,” which was 100, and with an IQR “only 2 

off,” and thus, was “close enough.” The teacher simply asked:  

Teacher: What’d happen when we do it again? ((Model rerun, new sample median was 96.)) 

Isaac: What the?! 

Teacher: Still like your model? 

Isaac: No. 

Teacher: Why not? 

Isaac: I don’t know.  

Teacher: I couldn’t have planned that better if I wanted to. That makes me so happy that that just 

happened. 

Isaac: Well, ah. ((all laughing)) I don’t know what happened.  

Teacher: I just ran it again. 
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Isaac: Run it again. ((Model rerun; new median was about 98.)) There we go, a little bit better. 

Dean: ((pointing to the error device)) It isn’t the same to get +3 and -3 … 

Teacher: ((keeps rerunning the model)) Look at that one. 

Isaac: Go 100. 

Teacher: If we want to see what happens over lots of time, can we collect the statistics of that, 

collect our statistics and see if we still like our model, or our model is a little too cranky? 

The teacher asked students to anticipate another simulated sample. Again, the teacher appealed to an 

image of repeated process. The students seemed astonished by the shift in the new sample median 

generated by their model. Isaac was rooting for his model to do better. Dean pointed out a potential 

defect in the random device and started revising it. The teacher reran the model a few times, before 

she suggested collecting the model statistics to “see what happens over lots of time,” which would 

become grounds for “see[ing] if we still like our model.” In doing so, the teacher began to establish 

that model fit required attending to the long run, to avoid falling prey to a “cranky” model that could 

produce a few samples of corresponding statistics just by chance. 

With sampling distributions of model statistics students could extend their evaluation of 

model fit to include considering how often samples like this occurred: 

Dean: Do you like it like that? 

Isaac: Yeah, I say it’s a pretty good model. You know, 55% of the time our target, our median 

was (100). 

Dean: Over half 

Isaac: Oh, but the width of crown [IQR] needed to be like 5. So, let’s see how much of the time 

we got it to 5. 26% and that’s a fourth. I mean, is it really? A fourth of the time we got 5. 

The following day, Isaac and Dean shared their results with the teacher, and asked, 

Isaac: Would you say this is a good representation? 

Teacher: I don’t know. Would you? 

Isaac: Yes 

The students seemed satisfied that their simulated medians were 100 over half of the time, but 

unsatisfied and a bit skeptical that their simulated IQR’s were 5 only a fourth of the time. Implicit in 

this reasoning about the likelihoods of model statistics—how often do samples like this occur?—

was an image of long-term repeated process. By appealing to an image of repeated process, the 

teacher motivated employing sampling distributions of model statistics to evaluate model fit.  

 

Considering criteria for “good” models 

The end-of-year interviews revealed that students came to think that good models explain or 

represent a process. They viewed models as approximations of processes (rather than as exact 

copies). Interpreting models as approximations entails imagining possible outcomes even when they 

are not present in an empirical sample. In the episode below (Lesson 12), the class contrasted two 

positions on how to construct a model of the psychophysics experiment described above. The teacher 

animated a student’s position that a value absent from their class’s empirical sample (an error of -5 

or an estimate recorded at 95) should not be generated by the model. Appealing to an image of a 

repeated random process, many students disagreed with the teacher’s position, arguing that values 

missing from just this one sample should be included in the model as “possible” values: 

Teacher: Let’s vote. Who think they should not have -5 up there? Who’s with me? ((A few 

students raised their hands.)) Because it didn’t happen? 

Student: So? 

Students: It’s possible. / It’s still possible. / It’s plausible. 

Student: Just because it didn’t happen- 

Teacher: Based on the data, it’s impossible. It didn’t happen. ((pointing at the empty spot at 95 in 

the observed sample)) 

Boston: Well, it’s between the two numbers that did happen, so it’s possible. 

Bryant: That’s just one data set. 

Teacher: Oh, so Bryant said this is just one data set. 

Students: Yes 
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Teacher: So, Bryant, why do I care that that’s just one data set? What does that tell me? 

Bryant: Because not everyone is gonna get every single number. If we run it more times, there’re 

more possibilities. 

Teacher: What do you mean run it more times? Run the model? 

Bryant: If we were to do the line more times, again and again, if [another class] do it, then it’ll 

be- 

Charlie: Like if we do the line again. 

Teacher: Oh, you mean if I collect the real data again it’s possible to get 95, so since it’s possible 

for it to really happen in real life, my model might want to represent that happening? 

Students: Yes. 

Even though a value was missing from an empirical sample, students could imagine it occurring in 

another hypothetical repeated experiment. The teacher made this explicit by asking a clarifying 

question, so that students were imagining the model as repeating the actual experiment itself more 

times. The aesthetics of a “good” model of a process extended beyond mere fit with the data to 

include how well the chance model approximated the process being modeled. 

 

CONCLUSION 

We described some of the ways in which a teacher encouraged students to construct an image 

of a sample as a collection of outcomes from a repeated stochastic process and how she challenged 

students to elaborate and extend this image as they considered model-fit and criteria for “good” 

models as reflecting these repeated processes. Students initially tended to think of models as 

capturing data, so that when a model’s simulation replicated an aspect of the empirical data or an 

aspect of the problem situation, they were satisfied. With teacher questions, such as what would 

happen in the next simulated sample, or what would happen if the process were repeated “again and 

again,” and with teacher positioning of students as debating the grounds of good models, students’ 

stances gradually shifted to view particular samples as members of an imagined collection of samples 

that varied. This image was appropriated by students to justify model fit: Students often challenged 

models offered by peers for not generating “possible” values consistent with a process, but by chance 

not present in an empirical sample. The enterprise of construing a sample as hierarchical was not 

simply a matter of insight—students often “fell back” to capture criteria, albeit in more sophisticated 

ways, such as a model that simulated sample medians corresponding to the empirical sample, while 

failing to notice that the model did not represent the variability of the process as adequately. But the 

teacher addressed these mishaps in modeling by continually emphasizing chance as describing long-

term process, and this stance was appropriated by students who often used it as a basis for model 

critique—of their model and those of peers. We have focused here on a relatively narrow yet 

important form of teacher assistance. However important this form of assistance, it was 

complemented by others that deserve a fuller description.  

 

REFERENCES 

Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic Data Exploration. Emeryville, CA: Key 

Curriculum Press.  

Lehrer, R. (2017). Modeling Signal-Noise Processes Supports Student Construction of a Hierarchical 

Image of Sample. Statistics Education Research Journal, 16(2), 64-85.  

Lehrer, R., Kim, M.-j., & Schauble, L. (2007). Supporting the Development of Conceptions of 

Statistics by Engaging Students in Measuring and Modeling Variability. International Journal 

of Computers for Mathematical Learning, 12(3), 195–216.  

Noll, J., Clement, K., Dolor, J., & Peterson, M. (2017). Students’ use of narrative when constructing 

statistical models in TinkerPlots™. Paper presented at the The Tenth International Research 

Forum on Statistical Reasoning, Thinking and Literacy.  

Saldanha, L. A., & Thompson, P. W. (2014). Conceptual issues in understanding the inner logic of 

statistical inference: Insights from two teaching experiments. Journal of Mathematical Behavior, 

35, 1-30.  

Tharp, R. G., & Gallimore, R. (1988). Rousing minds to life: Teaching, learning, and schooling in 

social context. Cambridge: Cambridge University Press. 

ICOTS10 (2018) Invited Paper Wisittanawat, Lehrer

- 6 -


