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Purpose 

 
Statistics should be introduced with clear linkages to the mathematics that students already 

understand and within contexts that students find meaningful.  Otherwise, students may learn 
statistics in a rote fashion or apply statistics in a merely instrumental fashion and draw erroneous 
conclusions from data.  In this chapter we present two examples of the use of simple assessment 
techniques that uncovered students’ poor understanding of statistical concepts.                 
 

 
INTRODUCTION   

 
Many people reason in ways that contradict accepted statistical models (Tversky & 

Kahneman, 1971; Fong, Krantz, & Nisbett, 1986; Konold, 1991a,b). Among 11- to 16- year-
olds, statistical reasoning and routines are often viewed as arbitrary and inaccessible (Green, 
1983).  Problems in learning statistics persist even among researchers in the behavioral sciences 
(e.g., Greer & Semrau, 1984) and in medicine (e.g., Clayden & Croft, 1989).  Medical 
researchers frequently confuse: histogram and barchart, correlation, standard deviation and 
variance (Clayden & Croft, 1989).   

Completing a course in statistics does not inevitably lead to statistical insight.  In a number of 
studies, students in statistics courses were found to: (a) describe rather than justify their 
statistical solutions (Allwood & Montgomery, 1982); (b) fail to establish a conceptual base for 
their solution strategies (Allwood & Montgomery, 1981); and, (c) when faced with errors in their 
statistical solutions misjudge their errors as correct (Montgomery & Allwood, 1978a, 1978b), or 
ignore their incorrect substeps when accounting for their solutions (Allwood & Montgomery, 
1981).   

Many students learn statistics as a set of rules without always learning the meaningful 
contexts in which they should be applied. Skemp (1979) describes mere rule-based learning as  
“instrumental understanding” consisting of recognizing a task for which one knows a particular 
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rule. What we wish to strive for in our instruction is learning with meaning, what Skemp calls  
“relational understanding.”  In relational understanding, one relates a task to an appropriate 
schema or model; one does not blindly apply rules.   

The difficulty for teachers of statistics is to recognise those cases in which instrumental 
understanding is being passed off as relational understanding. One way to guard against 
students’ learning without understanding is to adopt assessment techniques that allow the teacher 
some insight into students’ thinking.  These techniques should be relatively easy to use, and 
economical of the teacher’s time. This chapter will illustrate with two examples how assessment 
approaches that focus only on computational aspects of statistics may miss misunderstandings 
that can be exposed by judicious choice of tasks, and interview questions.  In the first example, 
students’ approaches to describing simple data were examined.  In the second example, students’ 
understanding of the analysis of variance technique were explored.   

 
 

DESCRIBING SIMPLE DATA 
 

Twenty-five graduate students took a non-compulsory, introductory-level statistics class.  In 
the course, they were instructed in the use and value of plots from an exploratory data analysis 
(EDA) perspective, and were introduced to the SAS statistics package.   

Assessing shape is an important first step in data description, whether the data summary is to 
be graphic, numeric, or verbal (see Moore, 1990).  Data distribution can be assessed by drawing 
a bar chart (for a discretely measured variable), a histogram (for a continuously measured 
variable), or a stem-and-leaf plot.  The students were asked to respond to the following question:   

 
The ‘simplest’ form of statistics is to summarize a set of univariate data.  Summarize the following 
data in whatever way you think is appropriate.  The data refer to the heights (in meters) of 20 women 
who are being investigated for a medical condition: 

 
 1.52 1.60 1.57 1.60 1.75 1.63 1.55 1.63 1.55 
 1.65 1.55 1.65 1.60 1.68 2.50 1.52 1.65 1.65 
 
To test for mere instrumental understanding of statistical techniques, there are two deliberate 

misprints in this problem: (a) there are only 18 measures (not 20 as claimed); and (b) the 
observation of an 8-foot woman (2.50 meters) is almost certainly an error. The first misprint is 
designed to capture mechanical applications of procedure.  The second is designed to capture 
mindless acceptance of data as  “given .”  A central danger in statistics education is that we 
neglect to tell our students that statistics deals not with numbers, but with numbers in context 
(Moore, 1990).  For the latter error, a student could be expected to either note the data-entry 
error and provide a biased estimate of the mean, change it to 1.50 meters or other reasonable 
entry, and note the correction, or omit it and calculate a mean with the remaining 17 measures. In 
all cases some justificatory statement arguing that the 2.50 meters is a miskeying on the grounds 
that 8-foot tall females are not likely to exist would be expected. 

    
Categories of responses   
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We have categorized the student responses in four ways:  mindless reliance on statistics 
packages, generating a mean value without plotting the data, plotting the data and generating a 
mean value uninformed by the plot, and plotting the data and linking the choice of appropriate 
statistic to the distribution of the data. 

Mindless reliance on statistics packages.  One student responded,  “I would enter these [data] 
into SAS and use the PROC UNIVARIATE function.  This would give us all the info we needed 
and more: including mean, mode, median, standard deviation, variance, range, etc.”  The student 
failed to link the choice of appropriate statistic to any underlying distributional assumptions.  
Note that, ironically, the statistics package would generate the correct sample size. 

Generating a mean value without plotting the data. The concept of the mean may appear so 
simple and unambiguous that adult students should not have any difficulties in understanding or 
using it.  The mean can be seen frequently in everyday life (for example, in professional and 
college sports, in the construction of high school, college and graduate school GPA’s).  Most 
data reported in professional journals are means and inferential statistics that deal almost 
exclusively with means and mean differences, yet the mean causes problems for many learners 
(Pollatsek, Lima and Well, 1981).  In this study, ten students provided a mean value without the 
use of a graphical method.  Of these, four students trusted the claim that there were 20 measures 
in the study. These four students, consequently, reported a mean value that lay outside the range 
of the data— impossible for a correctly computed mean.  

Plotting the data and generating a mean value uninformed by the plot. Students who plotted 
the data used a variety of graphical methods.  These included frequency tables, stem-and-leaf 
plots and histograms.  Six students constructed frequency tables of the sort displayed below: 

 
Table 1: Example Student Frequency Table 
_____________________________________ 
Measures Frequencies
1.52 ll 
1.55 lll 
1.57 l 
1.60 lll 
1.63 ll 
1.65 llll 
1.68 l 
1.75 l 
2.50 1   
_____________________________________ 
 
As the intervals between measures are uneven, tables of this type do not help the students see 

the effect of the outlying value.  Moreover, two of the six students summed the number of 
frequencies to 20—the number provided in the problem statement—although their tallies 
indicate that there are 18 measures.  The two students who constructed histograms failed to hold 
the areas, or the intervals constant across the x-axis.  This resulted in their inability to see the 
measure 2.50 meters as being an outlier. 

Plotting the data and linking the choice of statistic to distributional assumptions. Of the 
remaining eight students who constructed stem-and-leaf plots, five reported a biased mean value.  
One of these students, when probed, noted that,  “graphing data is the right thing to do.  You 
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graph your data first, and then get your statistics.”   Only three of these eight noted 2.50 as an 
outlier when generating a mean value.  These same students also realized that only 18 
observations were available to them and moreover they based their choice of statistic on the 
distributions they had constructed. Student #17 constructed the following display, and noted,  
“Clearly woman 15 is very tall and should be considered an outlying value.” 

 
 
Table 2:  Stem-and-leaf Display (student #17) 
_____________________________________ 
 
2.5  0 
2.4 
2.3 
2.2 
2.1 
2.0 
1.9 
1.8 
1.7  5 
1.6  0033550855 
1.5  275552 
_____________________________________ 
 
From the interview data it became apparent that all of the students had at least an  

instrumental level of understanding.  Most of the students described here were able to employ a 
rule (or procedure), but many saw little or no connection between the generated answers and 
their meaningfulness, or the meaningfulness of the original data themselves. 

 
 

ANALYSIS OF VARIANCE 
 

Graduate students who had scored either a  “B” or better in a course on analysis of variance 
were interviewed.  To earn a grade of  “B,” the students had to successfully complete periodic 
assignments in which statistics packages were used to analyze prepared data sets, and to 
complete a final exam involving computations.  In this study, students were able to mask their 
conceptual confusion during the course when they worked on prepared data sets (on paper and 
on the computer), and when they took the final written exam.  Here we characterize some of the 
misconceptions of students who had  “successfully passed” the course.  

The students were asked, individually, to: (a) talk about the new statistical concepts in their 
own words; (b) to apply the statistical concepts to data sets that were unlike the ones that they 
had met in the course; and (c) explain how the statistical concepts would help them interpret the 
results of experimental studies. 

Eight of eleven students interviewed had memorized fragments of statistical knowledge that 
were sufficient to  “earn” good grades on written examinations, but that did not form a solid 
basis for advanced statistical knowledge.  Without concerning ourselves with the details of 
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analysis of variance, we can say that the students’ responses could be characterized in a number 
of distinct ways. We again noted evidence of merely instrumental understanding of statistics. 

Four students knew the appropriate goal of the statistical technique, but were unable to 
discuss the technique with understanding (e.g., “ANOVA is for looking at means, so I would use 
ANOVA.”).  In response to questions, they parroted poorly remembered statistical fragments or 
labels (e.g.,  “I would get the ‘mean square within’ and the ‘mean square between”).  They were 
like tourists with a destination who could not locate the foreign language phrase book. 

Two other students were like tourists who had mastered only the grammar of the language.  
They replied to conceptual questions with only mathematical statements or descriptions of 
computational routines.  They were unable to connect the manipulations to  word problems (e.g.,  
“To solve this problem I would divide the ‘mean square within’ by . . .”)   

Two further students evidenced the opposite problem:  they could interpret the terms in the 
statistical model using everyday vocabulary, but could not link that understanding to the 
underlying mathematics (e.g.,  “Well, you have a measure of the signal in the data and a measure 
of the noise in the data, and you place them in a ratio, but I am not sure which numbers to use”).  
They were like people who can drive, but who are powerless when the car malfunctions.  When 
asked to  “look under the hood” of the statistical techniques, they were unable to explain their 
higher-level reasoning in terms of the underlying equations. 

One insight into instrumental understanding was the following. The probability of a Type I 
error—claiming there is a difference among groups when the null hypothesis is true— is 
conventionally set at p < .05.  One of the students, who could apply this rule correctly on written 
assignments, when interviewed, argued that the probability of a Type I error should be large as 
possible because a p valueless than .05, was such a small number that it implied that the 
differences among the groups must be insignificant:  the reverse, of course, being the case. 

Clearly, for teaching and assessment purposes, a distinction must be drawn between 
instrumental and relational learning, between computational skill and statistical expertise.  In 
both of these studies, computational assignments provided the students with the opportunity to 
mask poor relational understanding with (somewhat) effective instrumental understanding.  
When  “traps” were set in test items,  and the students were interviewed, their misconceptions 
came to light. 
 
 

IMPLICATIONS FOR ASSESSMENT 
 
Realize that the students must construct their own meaning for new concepts, but  sometimes 

resign themselves to learning material mindlessly.    If students do not make sense of what we 
teach both in terms of their own day-to-day language, and in terms of the language of 
mathematics, they may compartmentalize it, and respond to tasks instrumentally or robotically.  
As we have seen, both simple and advanced statistical tests can be calculated mindlessly.  To 
guard against this, we must (in our teaching and assessment) explicitly link the modeling 
language of mathematics to the conceptual model we are developing (see, for example, Lovie, 
1978 and Lovie & Lovie, 1976).  If we do not link more familiar concepts with statistical 
routines, we risk teaching (and later assessing) an easily forgotten cryptology such as  “PROC 
UNIVARIATE” or  “mean square between divided by mean square within” whose symbolic 
mathematical explication is an even more alchemical incantation: “Sigma X sub i sub j...” 
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Don’t just talk, listen.  It does not profit our students to  “talk at them” a subject matter that, if 
instrumentally learned, will have no value beyond the  “final” for the course.  Worse still, 
students may leave the course with an unjustified sense of mastery.  We must design tasks that 
require students to be mindful, tasks that eschew the sanitized and  “perfect”  items of statistics 
textbooks. Then we must listen to their responses.  Do not use the form:  Here is the problem, 
calculate an answer.  This approach failed in the written examinations described above. Rather, 
we should adopt the role of the naive listener who seeks continuous clarification:   “You told me 
that I needed to look at the data.  What does that imply here? I understand that a mean is a  
‘measure of central tendency.’  What would it look like in this data set?  Is it the same thing as a 
mode?  Why not? Is it better than a mode?  Can there be more than one mean in a data set? 
Explain your procedure to me in your own words,” and so forth.  Or more generally, we can ask,  
“Does the data make sense to you?  Does your answer make sense to you?” 

Listen not just to the content of the response; listen also for the affect and motivation of the 
student.  Does the student sound confident when giving the response?  As you listen, does the 
image come to mind of a traveler striding confidently along boulevards or a tourist fumbling 
sheepishly through an English-Statistics/Statistics-English dictionary?  If it is the latter, 
remember that assessment is best when it is in the service of the student.  Do not embarrass the 
lost traveler.  Turn the student’s bewilderment into an opportunity to revisit a concept that may 
be a concern for more than this one student. 

Don’t be misled by correct-sounding answers or flawless technique. As we listen to our 
students, we must guard against the error of assuming that, just because we hear the correct-
sounding terminology, the students understand what they are talking about. Some students learn 
quickly how to manipulate mathematical symbols so that they get an  “answer” (see Dallal, 
1990).   We must constantly look beyond the information given to us.  Some high school 
students were asked by the first author to give an example of a  “variable.”  They answered,  “x.”  
When asked what  “x” was, they replied, correctly, but circularly,  “A variable”!  When asked for 
a different example of a variable, they replied,  “y”! 

Statistics is an interpretive science.  It involves defensible descriptions, and defensible 
inferences, about samples and populations. Statistics is integrally related to models in the world 
and critical problem-solving skills.  Statistical thinking involves understanding the characteristics 
of a problem well enough to be able to select and apply the appropriate tool to answer the 
problem.  It is not enough to be able to  “do” the routine (either by hand or on the computer); one 
must know why one has chosen it, what its application tells one, and what limitations one must 
place upon its conclusions.   
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