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While literature demonstrating the weaknesses inherent in null hypothesis significance testing 
(NHST) and Frequentist statistical analysis is extant, NHST is still the predominant statistical 
methodology employed for research in the social sciences. Although Bayesian inference as a means 
of statistical analysis has made inroads in the scholarly literature in some social science 
disciplines, the use of Bayesian data analysis in the area of technology is limited. This article 
examines the advantages and disadvantages of the introduction of Bayesian methods in 
postsecondary technology programs, and concludes that there are significant advantages to the 
teaching of such methods. The authors recommend a blended approach, whereby both techniques 
are taught and applied to practical problems.  

 
INTRODUCTION 

Although the Frequentist school of statistical thought led to the development of hypothesis 
testing in the early twentieth century by Fisher, Neyman, and Pearson and the accompanying 
methodology for statistical decision-making, the years that have passed since that development 
have given rise to objections to the foundation upon which the methodology is based (Levine, 
Weber, Hullett, Park, & Lindsey, 2008). Those objections, having become both more frequent and 
more strident, have led to the increasing popularity of Bayesian inference (Sohlberg & Andersson, 
2005). While Bayesian methods have become somewhat more popular in the scientific literature in 
recent years, there is still significant resistance to their use as a means of making statistical 
decisions in the social sciences and, in particular, in the technology or applied engineering 
disciplines, where that use is infrequent. An anecdotal look at technology programs offered by 
higher education institutions indicates that courses where Bayesian inference is taught in either a 
theoretical or an applied context are limited in number. This causes one to pose the question as to 
why this is so. Could it be that Bayesian inference is not at least considered a valuable supplement 
to NHST? Or could there be other reasons? The current study is an effort to examine the 
weaknesses associated with null hypothesis testing, misinterpretations of NHST that are prevalent, 
and strengths that Bayesian inference can bring to statistical analysis. Furthermore, the study 
suggests a pedagogical method by which the two approaches can be combined in within the 
framework of postsecondary technology programs. 

 
WEAKNESSES AND MISINTERPRETATIONS OF FREQUENTIST ANALYSES 
 The credibility of null hypothesis testing suffers from the problem that its results are 
dependent on the intentions of the researcher. Kruschke (2010b) provides an elegant example 
illustrating the problem. Suppose that a researcher desires to collect experimental data. Generally, 
researchers tend to begin the data collection process with an approximate idea of how many 
samples need to be collected, and there are, of course, statistical methods by which that 
approximation can be determined, given some knowledge of the nature of the population. Suppose, 
however, that the data collection process becomes governed, for whatever reason, by time 
constraints. In such cases, the collection of data will occur over a fixed period. It may be such that 
the number of samples collected in each case is precisely the same. The inherent problem, however, 
is that the subtle change to collection of data over a fixed period of time leads to a change in 
assumptions regarding the underlying sample distribution, since, for relatively small sample sizes, 
the data collected in a fixed period is governed by a Poisson distribution with a mean of λ, the rate 
parameter. Assuming a simple t-test for a two-level independent variable, it can be shown that, for 
a given sample size, the t-statistic differs between the fixed sample size case and the fixed time 
period case, even when the same number of samples is collected. The difference in the t statistic 
could easily lead to a difference in the decision to reject or not reject the null hypothesis as a result. 
If the person handling the data collection portion of the experiment is distinct from the primary 
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researcher and those two persons differ in their understanding of whether the data collection cutoff 
point was based on sample size or time (regardless that the sample size ends up being the same in 
both cases), one could easily conceive of a situation where, given the same data, one rejects the null 
hypothesis while the other fails to do so. Hence, it is clear that the intentions of the experimenter 
play a considerable role in the decision outcome for the data set. 
 Another problem with null hypothesis significance testing lies in the specification of the 
population mean. It would be attractive to be able to state that, given the sample data obtained in a 
particular experiment, the population mean lies, with a certainty of (1 – α), within a definite 
interval centered around the point estimate of that mean. Unfortunately, Frequentist approaches to 
interval estimation do not provide the researcher with that ability, and that fact is occasionally 
misunderstood by both students and instructors in the classroom. Rather, the confidence interval 
differs from sample to sample, and contains the parameter that is being estimated with probability 
(1 – α) only on an asymptotic basis, i.e., if the experiment is repeated an infinite number of times. 
 The Bayesian analogy to parameter estimation provides the researcher with a credible 
interval, the interval in which the parameter of interest lies with a specified certainty. Because 
Bayesian analysis allows the computation of a posterior distribution, the distribution of the 
parameter being estimated, calculating the credible interval is a relatively trivial task. If, for 
example, we are interested in a 95% credible interval, we simply select the interval on the posterior 
distribution for which 95% of the probability density of the distribution is exceeded, a selection that 
can be made easily using software. The fact that the posterior distribution is available to the 
Bayesian researcher implies that a wide and rich variety of post-hoc testing can be conducted. 
Relative frequency analyses, as a result of their limited availability of post-hoc tests, therefore 
suffer from derogation at the hand of Bayesian approaches. 
 A third difficulty with null hypothesis testing (Kruschke, 2010a), and it is, indeed, one that 
is problematic for Frequentist statisticians to resolve, is that the p value that is generally the result 
of the statistical test employed is sometimes misunderstood to be the probability that the null 
hypothesis is “true.” In actuality, the p value is a conditional probability that is proportional to 
P(D|H0); i.e., the probability that the data occurs, given that the null hypothesis is true. It should be 
readily apparent that this is, in fact, not the quantity in which we are interested as researchers. 
Rather, the quantity of interest is P(H0|D), the probability that the null hypothesis is true, given that 
the data occurs. The lack of equivalence between P(D|H0) and P(H0|D) is a concept that is generally 
clear to students of basic probability theory, and is a direct result of, not-so-coincidentally, Bayes’ 
Theorem. Therefore, the results from many Frequentist statistical tests are often not those which the 
researcher is actually seeking.  

A rationalization that is commonly used in defense of the p value is that the two 
probabilities described above are close to equal, or are highly correlated. However, Monte Carlo 
simulations conducted by Trafimow and Rice (2009) indicate that the correlation between P(D|H0) 
and P(H0|D) is a relatively low .396. Even more disconcerting is the realization that P(D|H0) 
accounts only for less than 16% of the variance in P(H0|D), leaving more than 84% of the variance 
unaccounted for. It is apparent, then, that much of the presumed usefulness of the p value is, at 
best, misconstrued. 
 While students of probability theory may develop an understanding of the lack of 
equivalence between P(D|H0) and P(H0|D) in discussions of Bayes’ Theorem and the underlying 
principles of probability, the subtlety of distinguishing between the two in the setting of post-
secondary technology or applied engineering programs is regularly lost on them. One of the 
common features of statistical education in these settings is the focus on “real world” data analysis 
and applicability of interpretation. The focus on NHST as a ‘tool’ to be applied rather than a 
framework and methodology to be thoroughly understood in its varied implications often leads 
students using Frequentist analyses to make logical leaps unsupported by the limitations inherent in 
P(D|H0). The authors have noted that, even when Bayes’ theorem is taught in the post-secondary 
technology classroom, it is limited in scope and isolated from the variety of Frequentist analytic 
methods presented later in the course. This separation creates a situation in which students master 
the basics of Bayes’ Theorem but not the applicability of Bayesian methodology to settings in 
which they face themselves. 
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BAYESIAN INFERENTIAL APPROACHES TO ADDRESS NHST WEAKNESSES 
 It should be readily apparent from the preceding analysis that NHST has a number of 
inherent difficulties that are not present in Bayesian approaches. Bayesian methods, for example, 
do not depend on the intentions of the experimenter with regard to the conclusions drawn, nor are 
they subject to issues with misinterpretation and lack of utility of confidence intervals. Moreover, 
the posterior distribution available to the Bayesian analyst readily provides P(H0| D), the quantity in 
which the analyst is most interested, as opposed to the more ambiguous quantity P(D|H0). 

Supporters of Frequentist methods may point out that Bayesian methods are not suitable 
for elementary courses and are themselves subjective in their reliance on prior distributions, but 
Berry (1997) counters the suitability argument in describing his implementation of those methods 
in an elementary statistics course. In addition, Fisher and Wolfe (2012) discuss a novel method of 
using spreadsheets to assist with students’ comprehension of conditional probabilities. Berry also 
notes that science itself is subjective, and that the use of priors simply mirrors the effects of our 
own subjectivity in terms of the scientific experience we possess within our respective fields of 
endeavor. 

Concerns over the use of appropriate prior distributions in the Bayesian equivalent of null 
hypothesis testing have been discounted by Lee and Wagenmakers (2005), who point out that the 
use of uninformative priors that are transformationally-invariant is a recent development in 
Bayesian data analysis that resolves such concerns.    
 
BLENDED APPROACHES TO STATISTICAL ANALYSIS 

Rodgers (2010) argues that a blended approach to the use of statistical analysis in social 
science and related fields (including technology programmatic education) has been quietly growing 
within certain circles of educators and practitioners amid a slow decline in the nearly exclusive 
emphasis on NHST in these arenas. Howard, Maxwell, and Fleming (2000) suggest that this over-
reliance on NHST methods in the psychological disciplines has existed for a 60-year period, but 
that recent advances in analytical techniques have led to its decline. 

Rodgers (2010) also suggests that statistical modeling techniques (structural equation 
modeling, multi-level modeling, etc.) provide a more comprehensive view of the nature of 
phenomena under investigation than is possible with Frequentist approaches; in addition, modeling 
approaches build upon the growing interest in technology and organizational theory regarding the 
nature of complex systems. A unique characteristic of a modeling-based rather than a Frequentist-
based approach to post-secondary technology education programs is that the models have greater 
ability to incorporate multiple perspectives to statistical education. Subbian, Srinivasan, and 
Shanthi (2011) demonstrate how a Bayesian modeling approach to education data analysis can be 
successfully implemented in a higher education environment. 

The primary author incorporated a blended approach in the teaching of a graduate-level 
course on Bayesian data analysis as applied in the aviation discipline in 2013. In a number of 
topical areas within that course, NHST methods were presented and were followed up with 
analogous Bayesian methods. For example, analysis of variance was explained and demonstrated 
using a simple example of Fisher’s F-Test. Assumptions implicit in that test, i.e., homogeneity of 
variance and normality, were then discussed. The discussion was followed with a presentation of 
the Bayesian analog, in which it was demonstrated that the hierarchical model used could be 
modified to adapt the algorithm to take into account cases in which both non-normal and 
heteroscedastistic data were present. Students were then presented with homework designed to 
require them to apply the modifications to a set of aviation-related data. Anecdotal feedback 
indicated that this approach was successful in making the point that the Bayesian method provides 
both a fresh perspective of the problem and a set of tools that should prove useful for future 
application. 

Ideally, statistics education in the post-secondary setting must provide future scholars and 
practitioners with a more comprehensive set of tools than is currently offered. Bayesian analysis 
should be integrated into the teaching of NHST rather than presented separately; and educators 
would be well served to teach NHST as only a basis for the development of statistical models. In 
particular, Albert (1995) suggests the teaching of subjective and conditional probability and then 
introducing the discrete Bayes approach to proportions to introduce basic concepts of inference. 

ICOTS9 (2014) Contributed Paper - Refereed Mott & Bowen

- 3 -



 
 

A substantive weakness of much teaching in the post-secondary technology setting is the 
failure to teach students of the limits of NHST and to ensure their mastery of any but the most basic 
analytic techniques, including the limits of statistical power in Frequentist analyses (Ison, 2011). 
The presence and accessibility of sophisticated modeling and Bayesian analysis computer programs 
on most institutional campuses means that faculty should be able to devote more of their time to the 
nature of more complex analyses rather than a focus on the mechanics of hand-calculations. For 
example, Allenby and Rossi (2008) discuss how a Bayes package on an R platform was 
successfully utilized to solve nontrivial problems in a business statistics course; Lecoutre (2006) 
and Lecoutre, Lecoutre, and Grouin (2001) explain how analyses of variance can be taught in a 
Bayesian context using experimental data. However, the teaching of a blended method that 
synthesizes these varied approaches will only be as successful as the quality of the instructor – 
which means there must be significantly more devotion to the continuing education of statistics 
instructors in these programs. 
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