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Research into students’ knowledge about uncertainty has tended to focus on contexts where the
variation observed might easily be attributed to randomness. Yet, the variation observable in many
everyday phenomena might be seen as partially-determined, in the sense that one main factor
might explain the signal in the variation but additional noise is often inexplicable and might be
accounted for as random error. We set out to research how students (age 11) accounted for
variation that is in this sense partially-determined. In this paper, we describe how students’
expressions of uncertainty were shaped by particular features within the activity structure in which
children recorded and represented the results of their experiments and then modelled the variation.

PARTIAL DETERMINATION

Statisticians often set out to make sense of data using models that predict a signal that
accounts for variation of a dependent variable in terms of the variation in one or more independent
variables. Inevitably there is more variation in the data than can be explained through the signal.
The remaining variation is often described as noise. A full description of the many ways that
statisticians model phenomena involving signal and noise, and the range of terms used to describe
them, is given by Brovocnik (2005). In this paper, we refer to phenomena that might be modeled in
this way as partially-determined.

A very wide range of phenomena can in this sense be regarded as partially-determined, and
yet, educational research on probabilistic thinking has largely focused on phenomena that are
generally modelled as undetermined, or totally random, with a focus on familiar random generators
such as coins, dice and spinners. (see, for example, Konold, 1995; Pratt, 2000; Ireland & Watson,
2009.) Indeed, there is very limited research on students’ understanding of partially-determined
phenomena. Grotzer and Perkins (2000) established a taxonomy of how causality might be
modeled and how students reflect on those models. One element of their taxonomy was
probabilistic causality, where a level of uncertainty is introduced into the causal relationship. The
notion of probabilistic causality lays bare the idea that even coins, spinners and dice are not in
themselves perfectly random but that, in using a model that is totally undetermined, the
unmanageable layers of causality that determine the outcome are intentionally masked. Partially-
determined phenomena are more evident when there are easily identifiable signals but when it is
also apparent that the signal is insufficient to account for variation in outcomes. Prodromou and
Pratt (2012) have reported on older students making sense of simulated basketball throws, where
the success or failure of a throw is not entirely determined by the kinetics of the throw itself. We
report here how younger students made sense of partially-determined phenomena.

ACTIVE GRAPHING AND EXPLORATORY DATA ANALYSIS

Ainley et al (2001) explored young children’s understanding of scatter graphs by engaging
them in experiments that generated bivariate data. In fact, the scatter graphs demonstrated variation
resulting from partially-determined phenomena. In one task, children explored the amount of mass
that could be supported by a paper bridge, where the independent variable took the form of the
number of folds in the paper, in order to design a bridge that could support a precious china egg. In
another example, the focus was on the time of flight of a paper flying machine, where the
independent variable took the form of the length of its wings, the aim being to make a champion
flyer. The approach in this research, which they termed Active Graphing, allowed students to gain a
sense of the relationship between the signal and the dependent variable by gradually making sense
of the scatter graph. The noise in the data was treated as something to discount rather than explain;
indeed, the focus was very much on the signal. Active Graphing requires students to anticipate how
they might change the independent variable in their experiment to clarify that relationship, for
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example by filling in apparent gaps in the data. One limitation of Active Graphing is that it requires
an independent variable and so is not a valid pedagogic approach when teaching about
observational data. For example, a typical classroom project is to ask the class to measure
themselves and look for relationships within the data, such as a connection between arm length and
height. In such an activity, the children select an individual child and measure both variables; there
is no independent variable and so Active Graphing does not apply.

Pedagogic approaches developed to handle observational data mostly exploit the power of
digital technology to manipulate, compute and dynamically represent data using Exploratory Data
Analysis (EDA) (Tukey, 1977). Probability is generally seen as a difficult topic to teach and learn
(for example, Falk & Konold, 1997; Shaughnessy, 2003; Jones, 2005) but EDA was seen as a
technique that could bypass those difficulties and thus facilitate the identification of ‘stories’ in
data (Cobb, 2005). However, EDA relies heavily upon graphical interpretation, which is itself
known to be challenging for students (Curcio, 1987; Monteiro & Ainley, 2004).

In this research project we asked whether there might be a pedagogic approach that
somehow marries the strengths of Active Graphing to support the appreciation of graphs and EDA
to unearth the signal by managing the noise. We noted the new functionality in TinkerPlots 2 (TP2)
(https://www.keycurriculum.com/products/tinkerplots) to create statistical models of phenomena.
Consider again the task for children to measure their arm lengths and heights, which is accessible
to EDA but not to Active Graphing because there is no independent variable. Suppose that the
focus of the task becomes to model the relationship between arm length and height in TP2. Such a
model might be understood as a machine to create heights from arm lengths (as in the ‘cat factory’,
Konold et al, 2007). A successful machine (i.e. the model) would need to reflect the signal, in the
form of a relationship between arm length and height, since arm lengths and heights are not
independent, and the noise, as not all children with a specific arm length have the same height.
Such a modeling approach creates an artificial independent variable, arm length in this example,
much as statisticians model phenomena by conjecturing signal variables to see if they do in fact
account for significant amounts of variation in the dependent variable. The creation of an artificial
independent variable opens up the possibility that Active Graphing might be a valid pedagogic
approach in tasks based on observational data.

In this study, we set out to design tasks that incorporate this modelling approach, aiming to
draw on the following attributes from Active Graphing and EDA: (i) it is possible to design tasks
that are purposeful from the student’s point of view; (ii) such tasks might generate meaningful data,
familiar to the students because they are collecting it themselves; (iii) there is a real need for the
children to use the graph in order to complete the activity. We aimed to trace the relationship
between the design (of the tasks and the modeling tools in TP2) and how the children expressed
uncertainty when the variation was partially-determined.

METHOD AND SETTING

We worked with four different groups of three 11 year-olds from state primary schools in
England. These children had little or no experience of using TP2, but were familiar with
conducting experiments in science in which they had to design “fair tests’, take measurements and
record data. Two tasks were developed, and each was trialled with two groups of children.

The Angry Emu Task
The children were asked to help Rovio (developer of the popular Angry Birds game) to

plan a game with a new bird: Angry Emu. As in the Angry Birds game, players use a slingshot to
launch the bird but Angry Emu cannot fly in the air, and moves only horizontally. The children
were asked to prepare a data-based recommendation to help develop the Angry Emus computer
game in a way that will resemble the real movement of a toy bird (seated on a toy car) launched
from a sling made from a length of elastic. The activity structure included four main stages:

1. The researcher introduces the task. The children engage in free play with the equipment.
They experience how the bird physically moves, and begin to measure the stretch of the
sling, and the distance travelled. They are encouraged to test each stretch a number of
times, and to begin to predict outcomes.
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2. The researcher shows how to record and graph data in TP2. The children repeatedly
generate graphs, make predictions and gather more data as necessary. They experience
variation in outcomes, and begin to express uncertainty and deterministic explanations.

3. The researcher demonstrates how to create a machine. The children express their ideas
about signal and noise by making a machine, which links two devices representing the
stretch and the distance. They use this to generate data and produce graphs.

4. The children compare the data generated by their model with their previous experimental
data. They predict outcomes for other values of the stretch which not yet explored.

The Angry Emu task is similar to the original Active Graphing tasks insofar as the children
engaged with a partially-determined phenomenon (distance travelled by the Angry Emu) by
collecting data, but, in comparison with the tasks used in earlier research, where the purpose was to
make a particular product, signal was not prioritised over noise.

The 101 Dalmatians Task
The children were asked to imagine that they were creating a scene as part of a theme park,
which will show 101 Dalmatians. The dalmatians needed to be different sizes (as in the original
story), and look reasonably realistic. They were given some data about five dalmatians:
The data focus on quantitative variables but the colour
Table 1: Initial data: five Dalmatians of the dalmatians’ spots was included as a simple

access point to TP2 for the children. The data is
spots height | tail | body | leg carefully designed to incorporate the following
brown |41 23 |40 22 approximate relationships: (i) body length = height at
black 37 23 |37 18 shoulder; (ii) leg length is between half and two thirds
black 26 13 27 14 of height at shoulder; (iii) tail length is marginally
black 30 19 |30 16 more than half of the body length. We also included
black 30 15 |31 17 examples where the same height did not relate to the

same lengths in other variables and similarly the same
tail length failed to correlate with the same values in other variables. The planned activity structure
had the following inquiry stages:

1. The researcher introduces the task and leads a discussion of the data with the children,
using plots to compare variables, and encourages the articulation of relationships.
2. The researcher uses the data on the colours of spots to show how to create a machine. The

children add devices for height and one other variable (body, leg or tail length) to the
machine. When data are generated and plotted the researcher encourages discussion about
whether the data are realistic, with the aim that the children will notice that the machine
generates nonsense dogs because no relationship between variables has been built into the
machine.

3. The researcher shows how to build dependency links. The children use this method to
express their ideas about the relationship between the variables. In doing so the children are
likely to recognize the need to include some variation, so the researcher demonstrates how
to input a range of values. The children use this facility to express their ideas about noise
alongside signal.

4. The children generate graphs and discuss the appropriateness of the data, both in terms of
producing realistic dogs and in relation to the original data. They may then go on to modify
their machine accordingly.

Below we discuss the activity that emerged for these tasks. The key issues that we report
were those identified from our analysis based on a progressive focusing of the data.

DISCUSSION AROUND EXCERPTS FROM THE DATA
(R = researcher; other letters = specific children; italicized comments are added for clarification.)

The Angry Emu Task

In Stage 1, the children tended to account for variation in how far the angry emu travelled
through actual or imagined deterministic causes:
R.  So how would you say it moves when you pull the springy to 35? (The children invented the name
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‘springy’ to stand for how far the elastic was pulled back before release.)

C. Out of control.

L. Yeah he goes out of control sometimes it works and sometimes he does backflips and sometimes he
just does spins.

C. He does spins and goes sideways and like just crashes into things.

K. He goes rapidly.

C. He goes like rapidly he goes. (He gestures with his hands a motion where the hands veer away to one

side.)
Such deterministic explanations were apparent in the responses of all children on this task but such
explanations were supplemented by a different type of expression as the activity developed.

When the children were encouraged to predict the outcomes of experiments, or to imagine
reporting their conclusions to Rovio, they began to use verbal indicators of uncertainty.

R.  So what are we going to say to Rovio when the springy is 20?
L. [Ithinkit’ll be 50.

R.  So each time we do the springy 20 it goes exactly 50.

C. No it goes just under or just over.

L. About50.

C. About... around.

The children occasionally used a range of numbers to express uncertainty in the distance
travelled, and this manner of expressing uncertainty became the norm in the next stage when they
began to build a machine to generate distances. There are various ways of expressing the
distribution of values in TP2 but the simpler methods that we were using require a range of values
(or even more simply each separate value can be entered but this soon becomes tiresome). As a
result of this requirement, the idea that the uncertainty can be expressed as a range became fixed as
the favoured type of expression. During stage 3, one girl expressed this idea as a template:

L. Yeah and then in here that’s where we put the something to something.

We wondered how the children were deciding what the minimum and maximum values in
the range should be:

R. Ok now before you do anything | want you to explain to me why you chose those numbers. (They have
chosen 40 to 75).

C. Because we’ve got 43 and 73 so...

L. Yeah 43 is like over 40 so if we put it at a 10s number and round it up that’ll make it easier and 75
because 80 would be a bit too much so we can round it up too to 75.

To identify the range of distances for each stretch the children looked at the lowest and highest

values of the distance travelled in their experiment, and then used a mixture of numerical rounding

and visual approximation to choose the values they put into the model.

An expert might use a similar method, although they would be aware that some allowance
needed to be made for the distribution. For example, an expert might want values near to the centre
of that range to be chosen by the machine rather more frequently than those near to the extremes.
TP2 would allow such methods based on distributional thinking but we tended to place emphasis
on simpler methods, not expecting such young children to have access to this type of reasoning.

The account of the activity so far places emphasis on noise and little has been said about
signal (in contrast the original Active Graphing research). Perhaps they did not articulate a
relationship between the stretch and the distance travelled simply because it was too self-evident.
Occasionally, there were glimpses of the children’s accounting for the signal in the variation:

Ok so you feel you can’t be sure about how far it’s going to go?
No but..
But you could...
But is it completely unpredictable?
No you can have a strong ... you can have a really strong guess at it.
The notion of ‘having a really strong guess at it” seems to capture informally the interplay
between signal and noise.

TIWO D

R. Ifit’s 15 (referring to the stretch), could you tell what would be your prediction for how far it might go?
K. 35.

R.  About 35. Can you explain to me how you worked that out?

K. Well I think it might be it because 10 is round about 25...(K is looking at the graph where there is a

data point at ‘spring’ (stretch) 10 and distance 25) But, like, 5 more springy might be like 10 more
distance
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K. appears to have an early algebraic appreciation of the relationship whereby the signal in
how far the angry emu travelled was determined by adding 10 more onto the distance for each five
that is added to the independent variable, the stretch. This comment expressing a sense of the
gradient in the linear relationship is unusual, although at other times children used gestures which
indicated a notion of slope. Although K uses precise numbers, the relationship is clearly not seen as
totally determined as, at other points in the activity, all of the children articulated ideas about noise.

The 101 Dalmatians Task
The activity developed in broad terms as predicted in the task design, though the researcher
needed to intervene quite explicitly in order for the children to recognise the nonsense dogs that
moved them on from Stage 2 to Stage 3. One notable difference between the activity arising out of
this task, compared to the Angry Emu task, is that the children rarely accounted for variation
causally. This is perhaps not surprising since the data in this task are observational. Once the
children began to build a machine to generate attributes of the dalmatians, they occasionally used
language that suggested causality, though this related, to this machine world rather than to reality:
M. I think we should do the leg length next because then it will make the leg length out of the height.
Verbal indicators of uncertainty also emerged in this task but in a rather different way. In
the Angry Emu task, the children were able to experience directly the variation in how far the emu
travelled and they could see that it did not travel the same distance even when the same stretch was
used. Therefore we built a similar effect into the given data so that dalmatians with the same height
had different tail lengths. Verbal expressions of uncertainty, however, emerged also by reference to
the relationships that had been built into the data.
A. It’s like the same because 30 is there (pointing to the height of one dog) and 30’s there (pointing to the
body length of the same dog), but it’s just a bit bigger - that’s why out there and then that is just, like,
30.

R.  So you think that the body length and the height are about the same?
A.  About the same yeah.
R.  Are they exactly the same?
A. No.
M. Because, even if you look at that, that’s exactly on 30 there, but there it’s a bit over.
L. Butit’s a bit bigger - not loads bigger.
A. was also the first to notice a relationship between height and leg length.
A. I’'m noticing the leg length and the height; the leg length is 16 there. If you double 16, it will get to 31,

and that’s close to 32. (32 was the actual value but A made a small arithmetic mistake in doubling the
leg length.)
(After some further discussion...)
A. Sothe height to the leg length ... height, if you half that, you’ll get close to the leg length of the dog.
Almost from the outset the 101 Dalmatians task seemed to facilitate discussion of signal
alongside noise. Such discussion only began to emerge towards the end of the Angry Emu task.
The use of a range of values to express the variation in, say, leg length given a value of another
variable (height) did not emerge in the early stages, perhaps because noise was expressed as
deviation from the relationship (as signal) rather than from previously measured values (as was the
case in the Angry Emu task), However, this type of expression of uncertainty did emerge once the
children began to build a machine because, at that point, the software required such an input. For
example, below, L. is deciding what value to give to leg lengths.
L. Between 15 and 20 really, because 10 would be too small, but then something like 22 would be too big.
The approximate relationships observed in the original data continued to be a reference
point for the children when building the machine. In the next excerpt, the children were deciding
what values to give the leg length when the height was specifically 37:
What numbers have you chosen (for the range)
15t0 19
And why was that?
Because it’s approximately half, because 15 is half of 30 and then 17 is half of 34 and there’s not
really a half of 37 so it’s the closest halves to it.

zoz®
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CONCLUSIONS

In these tasks, children expressed uncertainty of outcomes with respect to deterministic
causes when the task itself involved experimentation and were less likely to do so when the task
involved observational data. However, when the observational data task was transformed into a
task to build a machine (or model), causal explanations emerged occasionally.

Verbal indicators of uncertainty (such as ‘about’, ‘around’) emerged in both tasks. When
using experimental data, these expressions of uncertainty related to previous experimental values
whereas, when using observational data, they related to relationships found in the data. These
verbal indicators became quantified as ranges. This happened easily when using experimental data
and became fixed as a template when building a machine to generate data similar to that in the
experiment. Such quantification took longer to emerge when using observational data and was only
really prompted when building a machine. When using experimental data, statements about the
relationship were not apparent until late in the activity when one child even expressed the
relationship in early algebraic language. When using observational data, the relationships in the
data quickly became a focus and were used not only to discuss noise but also as a means for
deciding on the range of values in the machine.
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