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Although students in traditional introductory college statistics courses see a frequentist definition 
of probability, they are rarely asked to use this definition, instead relying on technology to conduct 
parametric tests. In contrast, in a simulation- and randomization-based statistics course, the 
relative frequency of simulated outcomes becomes the central focus of the process of drawing 
inferences. In this study, eight college students who were enrolled in an introductory simulation-
based statistics course were interviewed and asked to describe sampling distributions and make 
inferences; the results and analysis describes the ways they used and appeared to think about 
empirical probabilities. Although the students appeared to be able to make connections between 
various aspects of inferential reasoning, they also encountered difficulties that may be related to 
their focus on empirical probabilities. 
 
INTRODUCTION 

In recent years, there has been an increasing call for introductory statistics courses to focus 
on informal inference as an important precursor to understanding formal inference (e.g., Cobb, 
2007). As part of this call, there have been numerous recommendations for students to use 
simulation and randomization-based methods to engage in activities to support the development of 
this inferential reasoning (e.g., Garfield, delMas & Zieffler, 2012).  

In contrast to traditional approaches, the simulation-based pedagogy offers a basis for 
reconceptualizing the notion of probability and its role in drawing statistical inferences. In a 
traditional approach, students first learn probability rules (e.g., the addition and multiplication 
rules) then parametric probability models (e.g., the normal distribution) and then inference. In 
contrast, students in simulation-based classes use computer-based methods to construct empirical 
sampling distributions and then compute empirical probabilities to make inferences. 

The goals of this paper are to discuss the empirical probability and sampling distributions; 
to present an outline of an instructional sequence that is designed to help students use this notion of 
probability to make statistical inferences; and to identify features of students’ reasoning about 
sampling, probability, and inference after they participated in the instructional sequence. 

 
BACKGROUND: EMPIRICAL PROBABILITY 

Students typically encounter several notions of probability in a traditional introductory 
statistics class. Textbooks often initially define probability using a frequentist notion—for example, 
Moore (2010) defines it as “the proportion of times the outcome would occur in a very long series 
of repetitions” (p. 263). After presenting this definition, the books typically present classical 
probability by describing situations with equally likely outcomes (e.g. rolling a die or flipping a 
coin), and then describe axiomatic probability (e.g., the addition and multiplication rules), random 
variables, and probability distributions (e.g., the binomial and normal distributions).  

As Shaughnessy (1992) notes, “the model of probability that we employ in a particular 
situation should be determined by the task we are asking our students to investigate, and by the 
types of problems we wish to solve” (p. 468). A simulation-based approach to introductory 
statistics requires that students conceptualize and compute probabilities as long-run relative 
frequencies as they make inferences. Students in such classes learn to reason following the 
trajectory shown in Figure 1: They first construct a simulation model (e.g., a list of the numbers 
one through six to model rolling a fair die) then they randomly sample from the model and 
compute a statistic; this process is governed by the relative frequencies with which the outcomes 
occur in the model. Next, students repeat the sampling process to create an empirical sampling 
distribution of statistics; this construction is governed by sampling variation. Finally, the students 
examine the relative frequency of particular outcomes in the sampling distribution to make an 
inference. Since these relative frequencies are made explicit in the probability model and the 
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empirical sampling distribution, the probabilities involved in this process can be thought of as 
empirical probabilities.  

 

 
 
 

 
PRIOR RESEARCH 

The recent research in teaching and learning of probability has tended to focus on 
describing the ways students connect (or fail to connect) theoretically derived probabilities with the 
relative frequencies that are present in empirical data. For example, Lee, Angotti and Tarr (2010) 
and Rider and Stohl Lee (2006) had students use computer simulation methods to make inferences 
about whether or not dice was fair given data from rolling the dice. They examined the ways 
students understood and used ideas of sample size, variability, independence, and fairness within 
the context of the task and its various representations; they found that students who used the idea of 
long-run relative frequency and simulation methods were able to make “meaningful connections 
between the empirical data they had collected and theoretical probability distributions” (Rider & 
Stohl Lee, 2006 p. 5). In contrast, students who collected small samples and relied on formal 
statistical tests to make inferences appeared to not make such connections.  

Pratt, Johnston-Wilder, Ainley, and Mason (2008) investigated the tensions students 
experienced between “local” and “global” perspectives, in which students respectively focused on 
the short-term patterns and long-term patterns in randomly-generated data. They found that 
students in some situations initially focused on local patterns and then, later, on global patterns; in 
other situations, students appeared to shift their attention back and forth between the local and 
global perspectives. 

The students in these studies had (indirect) access to “actual” population parameters and 
based their inferential on the Law of Large Numbers rather than drawing conclusions using 
probability. This is in contrast to the scenarios students would encounter in an advanced statistics 
course in which they have access only to sample data and need to consider sampling variability 
when making inferences. Thus, there is still a need to investigate the ways students understand 
probability and inference in the context of resampling. 
 
INSTRUCTIONAL SEQUENCE 

The instructional sequence described here is based on the CATALYST curriculum 
materials (Garfield, delMas & Zieffler, 2012). The initial activities are designed to introduce 
students to the concept of probability as an empirical long-run relative frequency as well as to give 
them experience working with probability derived from a population model and as relative 
frequency in an empirical sampling distribution: 

 
• In the first activity, students are given several pig-shaped dice and asked to assign point values 

to each “face” so as to make a die-rolling game “fair.” The students in the class collect and 
aggregate their statistics, and then are asked to describe probabilities of rolling individual faces 
and of rolling collections of faces (e.g., having three back-rolls in a 10-roll set). Following this, 
they are asked to decide whether a particular group’s collection of rolls appeared “unusual” or 
“surprising.” 

 
Figure 1. Trajectory of inferential reasoning in simulation-based pedagogy 
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• In the second activity, groups of students take scoops of various colored beans from a large bag 
(containing approximately 30,000 beans) and use their aggregated statistics to estimate the 
proportions of the bean colors. Following this, they are asked to imagine that they are running a 
carnival game in which contestants are trying to guess the proportion of colored beans in the 
bag (after taking a scoop) and to use the class’ data to determine how often a contestant would 
guess within a certain range of the population parameter. 

 
Following this introduction to the two types of probability in the inferential reasoning 

trajectory, the students begin building population models and setting up computer simulations to 
generate sampling distributions. Initially, they use the aggregated data from the first two activities 
to build these models; next, they are introduced to a “blind guessing” model (i.e. a null model). In 
each repeated-sampling simulation, they create a weighted list of outcomes, use computer tools to 
take numerous samples and compute statistics, and then make statistical inferences based on the 
relative frequencies in the empirical sampling distributions. 

For example, in one activity, students are presented with a scenario in which infants in a 
research study are asked to choose between a “helper” toy and a “hinderer” toy (which had 
previously been observed engaging in, respectively, positive and negative interactions with other 
toys); the students are told that 14 out of 16 infants chose the “helper.” After constructing a null 
model (in which the babies are equally likely to select each toy), students use a computer to 
construct an empirical sampling distribution and answer questions such as the following: 

 
• The “Key statistical question”: If 16 babies randomly select between the helper and hinderer 

toys, how unlikely is it to see the observed result—or one further from what we’d expect—just 
due to the natural variation from sample-to-sample? 

• How would you find the probability of getting the observed result? 
• What does your numerical value mean? Use the meaning of probability in your explanation. 
• What would you conclude based on this probability? Does your numerical result make sense? 

Explain why or why not. 
 
The rest of the activities in the instructional sequence are pedagogically similar to the one 

described above, but introduce means, comparing multiple populations, randomization, and 
bootstrapping. Throughout these activities, the students are expected to use the underlying idea that 
probability is an empirical long-run relative frequency to explain and interpret the results of their 
simulations and the inferences they make based on these results. 
 
METHODS 

Eight undergraduate students participated in the study; all were enrolled in a one-semester 
introductory statistics course with a target audience of mathematics majors and minors.  Each 
student participated in two semi-structured interviews near the mid-point and end of the semester. 
In the interview, they were asked to work on four problems, which are outlined in Table 1. 

The students were asked to think aloud as much as possible while working on the 
problems; the interviewer asked questions designed to challenge the student’s reasoning and 
conclusions. The interviews were video-recorded (screen capture software was used for instances 
when the student was using the computer) and transcribed for analysis.  

Analysis of the data was conducted using grounded theory (Strauss & Corbin, 1990). The 
students’ utterances were read and categorized according to aspects of sampling, resampling, 
probability, distributions, relative frequencies, and statistical inference that they discussed and used 
as well as their reasoning when drawing conclusions and comparing distributions. 
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Table 1: Outline of interview questions 
 

Problem 1: You have a population of men with a mean height of 69 inches. A clerk at a post office in a 
small town takes a 5-person sample each day and record the mean height; a clerk in a large 
town takes 50-person samples. Which clerk will record more days over 71 inches? 

Problem 2: Researchers collect many samples of 50 Goodyear tires and compute the mean tread life of 
each; their results are displayed in a histogram [included in the question]. You collect a sample 
of Michelin 50 tires and find that it has a mean tread life of 6 years; is that evidence that the 
Michelin tires last longer than the Goodyear tires? 

Problem 3: Researchers sent out 2600 identical resumes; half had “white sounding” names and the others 
had “black sounding” names. They received 121 positive responses for the white-sounding 
names and 87 for the black-sounding names. Then they ran 500 simulations under the 
assumption that 208 out of every 2600 names should receive a response and the results are 
displayed in a histogram [included in the question]. Should the researchers be concerned? 

Problem 4: Given a histogram of a population of test scores and histograms of four potential sampling 
distributions [included in the question], which histogram(s) could represent sampling 
distributions with sample sizes of 4 and 50? 

 
RESULTS AND ANALYSIS 
 
Attending to Relative Frequencies 

All of the students discussed the relative frequencies of outcomes in the sampling 
distribution while they were making inferences and drew conclusions about parameters by looking 
for relative frequencies of an observed statistic. For example, below is an excerpt from Brian’s 
response to Problem 2 in Interview 2: 

 
Brian: From the data, it [getting a tread-life average of 6.6 years] would be surprising because you're 

looking at—it would be over here in this last bar [pointing to right-most bar]. And that's the upper, 
like, two-and-a-half percent, I guess you could say, of our data.  

 
Coordinating Sampling Processes 

In order to describe sampling distributions or make inferences, students needed to be able 
to discuss the processes of sampling from the population based on the relative frequencies of the 
population outcomes and then repeating this process multiple times. While doing this, they need to 
coordinate the shape, center, and spread of the population distribution with the center and size of 
the sample and then with the shape, center, and spread of the sampling distribution. All of the 
students in the study attempted to do this on most of the problems in the interview; some students 
were able to coordinate more processes and aspects than others. 

For example, in the excerpt below from Problem 1 of the first interview, Nick made 
connections between the (implied) shape, center, and spread of the population distribution with the 
center of the sample and then with the center and spread of the sampling distribution while 
discussing the role of sample size: 

 
Nick: So, the small post office is a pretty small sample, so you can have, like, a pretty wide variety with 

just five people, but if you have 50 people, a lot of them... because 69 inches is the average, so 
you're saying a lot of people are 69 or close to 69, otherwise you wouldn't get that as the average. So 
if you have a group of 50, there's going to be a fair amount of them with around 69 inches, but if you 
only have five then you could have a really tall guy and you might have one or two near the average 
but you could also have some short guys, and it's just more likely that your average will be further 
from the 69 inches. 

 
Attending to Sampling Variation 

Most of the students discussed the idea of sampling variation and the role it played in 
constructing the empirical sampling distribution. For example, in the excerpt below from Problem 
1 in Interview 2, Kevin used this idea to describe the spread of the sampling distribution as he 
connected the sampling and resampling process: 
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Kevin: There's natural sampling variation from each day. Like each day is going to differ a little bit. It's 
possible that they'll both be close to each other. And I mean, they would vary for the reasons I said 
before, because the one has a smaller sample size, the mean is going to get thrown in different 
directions depending on who walks through the door. And I mean, that principle holds true for the 
sample of 50, but you would need a lot more of either short or tall people to throw the mean. 

 
Attending Explicitly to Population Probabilities 

Although most students connected the process of sampling with constructing a sampling 
distribution, they typically didn’t attend to the probabilities in the population distribution when 
doing so. For example, in the excerpts below from Problem 1 in Interview 2, Brian’s reasoning 
reflects a lack of consideration that a fixed population should lead to a fixed probability of selecting 
a “tall” person: 
 
Brian: I think that the five—the smaller post office will record more days with an average over 71 because 

you have a smaller sample size so it would be easier for, let's say, two people to come in an be 
abnormally tall and it would skew the data way more because you have less data. So one skewed 
data point can affect the mean, because we're looking for the mean, more than it could affect it on 
the large post office. 

 
By failing to attend to the probabilities in the population model as part of the sampling 

process, students may have difficulty constructing an accurate empirical sampling distribution. This 
is particularly problematic when they attempt to make inferences, since these probabilities form the 
basis for repeated sampling from a null model; attending to this null model is essential for 
interpreting the empirical probabilities in the sampling distribution.  
 
Inference Only with Certainty 

Some students in the study attended to the relative frequency of outcomes in the sampling 
distribution but, based on this, were only willing to base their inferences on whether or not an 
outcome appeared. For example, in the excerpts below from Problem 2 in Interview 1, Nick 
decided that one could draw a conclusion about the tread length of tires only if the observed 
statistic didn’t appear in the histogram. Furthermore, Brian was able to discuss the role that 
sampling variation played in the resampling process and used this idea to justify his reasoning: 
 
Nick: I don't think that's [a statistic of 6 years] enough evidence because you have Goodyear groups that 

last six years or more, so it's looking at one group, and.... I guess Goodyear is capable of producing a 
group of tires that last just as long as the Michelin tires, so you can't say that one is better than the 
other. 

 
Inference Only from Multiple Samples 

On both of the problems where they were asked to make an inference (problems 2 and 3), 
many students believed that you couldn’t make an inference based on a single sample; instead, you 
needed to record multiple statistics to make an inference. In the excerpt below from Problem 2 in 
Interview 1, Howie asserted that you would need to have multiple observed statistics to draw a 
conclusion: 

 
Howie: I mean it's one instance where they last longer, but I think we have to look at many groups of 50 to 

compare the different data sets that we have. 
 
Distinguishing Probability from the Law of Large Numbers 

Several students appeared to have difficulty distinguishing between probability as a long-
run relative frequency and the idea of the law of large numbers. For example, Nick appeared to do 
this on Problem 1 in Interview 1: 

 
Nick: So probability is... the long run relative frequency. So if you make a lot of observations, you take the 

number of times a certain outcome occurs and divide by the total number of times you made 
observations. So, in this case it would be each person's height divided by all the heights you got... 
and you throw in average, um... yeah that, hmm... 
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DISCUSSION 
The students in this study discussed statistical inference in terms of the reasoning process 

they had experienced in the simulation-based classes by focusing on the relative frequencies of 
various outcomes in the sampling distributions. In addition, they were able to describe and 
coordinate various aspects of the reasoning trajectory to make sense of the sampling distributions. 
In particular, most of the students considered the effects of sampling variation in the repeated 
sampling process and discussed the ways this might relate to the values they observed in the 
sampling distribution. Despite this, most students had difficulty accounting for the probabilities in 
the population (or null) distribution as they described the sampling process.  

There were three aspects of the students’ inferential reasoning that might be distinct from 
the ways students in a traditional class might struggle with aspects of statistical inference. First, 
some students felt that it was only possible to draw a conclusion when the observed statistic had an 
empirical probability of zero in the sampling distribution (i.e. when the observed statistic didn’t 
appear in the sampling distribution). Since students in a traditional class wouldn’t have constructed 
an empirical sampling distribution from which to observe relative frequencies, it seems unlikely 
that they would want to reason from certainty rather than probability in the same way as the 
students in this study. Second, some students in the study believed that making an inference 
required that you actually draw repeated samples from the population and compare these to the 
sampling distribution; this might stem from a misapplication of the belief that repeated sampling is 
essential to the process of making an inference. Third, some students in the study had difficulty 
distinguishing the idea of a long-run relative frequency from the law of large numbers and, as a 
result, they confounded probabilities with averages. 

These results suggest that the students in this study were able to conceive of probabilities 
as long-run relative frequencies in order to discuss sampling distributions and make inferences. 
This suggests that the students’ experiences in the simulation- and randomization-based curriculum 
supported the development of these conceptions. However, as students develop this conception of 
probability, they also appeared develop particular misconceptions, and attending to these 
misconceptions will require new types of instructional intervention. 

 
REFERENCES 
Cobb, G. W. (2007). The introductory statistics course: A Ptolemaic curriculum? Technology 

Innovations in Statistics Education, 1(1). 
Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an 

introductory, tertiary-level statistics course. ZDM—The International Journal on Mathematics 
Education, 44(7), 883-898. 

Lee, H. S., Angotti, R. L., & Tarr, J. E. (2010). Making connections between observed data and 
expected outcomes: Students’ informal hypothesis testing with probability simulation tools. 
Statistics Education Research Journal, 9(1), 69-96. 

Moore, D. (2010). The basic practice of statistics (5th Edition). New York: W. H. Freeman. 
Pratt, D., Johnston-Wilder, P., Ainley, J., & Mason, J. (2008). Local and global thinking in 

statistical inference. Statistics Education Research Journal, 7(2), 107-129. 
Rider, R., & Stohl Lee, H. (2006). Differences in students’ use of computer simulation tools and 

reasoning about empirical data and theoretical distributions. Paper presented at the Seventh 
International Conference on Teaching Statistics (ICOTS-7), Ljubljana, Slovenia. 

Shaughnessy, J. M. (1992). Research in probability and statistics: reflections and directions. In D. 
A. Grouws (Ed.), Handbook of research on mathematics and learning (pp. 465-494). New 
York: Macmillan. 

Strauss, A. & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and 
techniques. Thousand Oaks, CA: Sage Publications. 

ICOTS9 (2014) Invited Paper - Refereed Weinberg

- 6 -


