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Continuous variables are often encountered in life. We measure age, blood pressure and many 

other things. In medicine, such measurements are often used to assess risk or prognosis or to select 

a therapy. However, the question of how best to use information from continuous variables is 

relevant in many areas. To relate an outcome variable to a single continuous variable, a suitable 

regression model is required. A simple and popular approach is to assume a linear effect, but the 

linearity assumption may be violated. Alternatively, researchers typically apply cutpoints to 

categorize the variable, implying regression models with step functions. We illustrate problems 

caused by categorization and introduce fractional polynomials (FP) as a useful extension of 

polynomial regression. Investigating the effect of age as a prognostic factor for breast cancer, we 

show how conclusions depend critically on how the continuous variable is analyzed. 

 

INTRODUCTION 

Continuous variables are often encountered in life. We measure age, weight, blood 

pressure and many other things. In medicine, such measurements are often used to assess risk or 

prognosis or to select a therapy. However, the question of how best to use information from 

continuous variables is relevant in many areas. To relate an outcome variable to a single continuous 

variable, a suitable regression model is required. 

A simple and popular approach is to assume a linear effect, but the linearity assumption 

may be questionable. To avoid this strong assumption, researchers often apply cutpoints to 

categorize the variable, implying regression models with step functions. This simplifies the 

analysis and interpretation of results. It seems that the usual approach in clinical and psychological 

research is to dichotomize continuous variables, whereas in epidemiological studies it is customary 

to create several categories, often four or five, allowing investigation of a possible dose–response 

relationship. However, categorization discards information and raises several critical issues such as 

how many cutpoints to use and where to place them (Altman et al., 1994; Royston et al., 2006). 

Here, we illustrate problems caused by categorization and argue that the approach should 

be avoided when investigating the functional relationship between a continuous variable and the 

outcome. We introduce fractional polynomials (FP) as a useful extension of polynomial regression 

and as a sensible way to model the relationship (Royston and Sauerbrei 2008). Use of a suitable 

function selection procedure (FSP) gives a simple way to check whether a linear function (our 

default) is adequate or whether a non-linear FP function improves the fit of the data substantially. 

By investigating the effect of age as a prognostic factor for breast cancer, we illustrate how 

conclusions depend strongly on the manner in which the continuous variable age is analyzed. In 

real data, several variables influence the outcome and a multivariable model is required. The basic 

idea behind the multivariable fractional polynomial (MFP) approach is discussed. 

From July 1984 to December 1989 the German Breast Cancer Study Group (GBSG) 

recruited 720 patients with primary node positive breast cancer into a trial. The dataset we use 

comprises recurrence-free survival (RFS) time of the 686 patients (with 299 events) who had 

complete data on the seven potential prognostic variables age, menopausal status, tumour size, 

tumour grade, number of positive lymph nodes, progesterone receptor and estrogen receptor. The 

values of age range from 21 to 80 years, the 10%, 25%, 50%, 75% and 90% centiles of the 

distribution being 40, 46, 53, 61 and 65 years, respectively. Further details and the website for 

downloading the data are given in Royston and Sauerbrei (2008) and the literature references there. 

 

PROBLEMS CAUSED BY CATEGORIZATION 

From a biological point of view, a cutpoint model is unrealistic, with individuals close to 

but on opposite sides of the cutpoint characterized as having different rather than similar outcomes. 

The underlying relationship with the outcome would be expected to be smooth but not necessarily 

linear. Use of two groups makes it impossible to detect a non-linear relationship. 
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From a methodological point of view, loss of information is an important drawback of 

categorizing continuous variables, key issues being the number of cutpoints and where to place 

them (Altman et al., 1994, Royston et al., 2006). In prognostic research and when investigating 

interactions between a continuous covariate and treatment in a randomized trial, a common 

approach is to create two groups by using one cutpoint, which may increase the probability of false 

positive results (Altman et al. 1994, Royston and Sauerbrei 2008). It becomes extreme when 

‘optimal’ cutpoints are used. Every possible cutpoint on x is considered and the value of x which 

minimizes the P-value is chosen. The cutpoint actually selected is to some extent due to chance. 

(Altman et al. 1994) called this procedure the ‘minimum P-value’ approach. Multiple testing 

increases the type I error probability from a nominal 0.05 to around 0.4. Although a correction to 

the P-value for multiple testing is available (Altman et al. 1994) the chosen cutpoint has a wide 

confidence interval and is rarely clinically meaningful. Critically, the difference in outcome 

between the two groups is over-estimated and its confidence interval is too narrow. 

The methods for determining a cutpoint described below still incur information loss, but at 

least not an inflated type I error probability. Possibilities include recognized cutpoints (e.g. > 25 

kg/m
2
 to define ‘overweight’ based on body mass index), ‘round number’ such as multiple of five 

or ten, the upper limit of a reference interval in healthy individuals or cutpoints used in previous 

studies. In the absence of a prior cutpoint, the most common choice is the sample median. 

However, different studies have different cutpoints, so that their results can be neither easily 

compared nor summarized. For example, assessing the prognostic value of S-Phase fraction in 

breast cancer patients, 19 cutpoints were identified (Altman et al 1994). Several of them were the 

result of an ‘optimal’ cutpoint analysis.  

 

Age as prognostic factor in breast cancer patients 

Figure 1 illustrates the results of several analyses using different cutpoints. We show 

estimates of RFS probabilities for subgroups created by the cutpoints. Figure 1(a) shows a large 

difference between two groups created by using the optimal cutpoint of 37 years. Younger patients 

have much lower survival probabilities than patients above the cutpoint. The P-value is 0.004 (after 

adjustment for multiple testing, P = 0.1). The corresponding hazard ratio estimate for older patients 

from a Cox model is 0.54 (95% CI 0.37, 0.80). The difference between the two age groups is much 

reduced if the cutpoint is taken at the median (53 years), see Fig 1(b). The P-value is 0.4 and the 

estimated hazard ratio is 1.1. In Figure 1(c) we give the results for 3 groups created by using the 

cutpoints 45 and 60. These two cutpoints were predefined Differences between RFS are small and 

the test of an effect is not significant at a conventional level (P-value 0.15). Compared with the 

youngest group (age  45) the estimated hazard rates are 0.75 (middle group) and 0.82 (age > 60). 

Figure 1(d) gives RFS probabilities in five 10 year age groups, starting at 40 years. Some of the 

groups are small and this analysis is presented for illustrative purposes only. Patients younger then 

40 have lower survival probabilities whereas differences between other groups are negligible. This 

result indicates that the prognostic effect of age cannot sensibly be described by a linear function. 

 

FRACTIONAL POLYNOMIALS TO CHECK FOR NON-LINEARITY 

In many cases, linearity reasonably well describes the functional relationship between a 

continuous variable and an outcome. This simple function has significant advantages when 

interpreting and presenting a model, for certain an important reason for its popularity. 

Nevertheless, there are numerous cases where linearity is not a reasonable assumption and results 

in a bad fit. For example, the prognostic effect of age in 10 year categories indicates that a linear 

function for age is probably unsuitable. In such cases the need for more complex functional forms 

is obvious. In the following we will propose the fractional polynomial (FP) approach, an extension 

of polynomial regression and therefore still simple, explainable and understandable. Nevertheless, 

the approach is quite flexible and can describe more complex relationships. 

 

Fractional polynomials 

As a starting point, we use the straight line model, , for simplicity suppressing the 

constant term, . A simple extension is a power transformation model, . The latter model 

has often been used by practitioners in an way, utilizing different choices of . (Royston 
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and Altman 1994) formalise the model slightly by calling it a first-degree fractional polynomial or 

FP1 function. The power is chosen from a pragmatically restricted set 

, where denotes .As with polynomial regression, extension 

from one-term FP1 functions to the more complex and flexible two-term FP2 functions follows 

immediately. Instead of , FP2 functions with powers  are defined as 

with and  taken from . If  we use , a 

so-called repeated-powers FP2 model. For a more formal definition, see (Royston and Sauerbrei 

2008). With the set of powers as just given, there are 8 FP1 transformations, 28 FP2 

transformations with distinct powers  and 8 FP2 transformations with equal powers 

. The best fit among the combinations of powers from is defined as that with the 

highest likelihood. The class of FP2 curves is very flexible, despite the small number of models; 

see for example Figures 4.4 and 4.5 of Royston and Sauerbrei (2008).  

 

 
  

Figure 1. Four Kaplan-Meier Plots using cutpoints 

The youngest group is always in blue. (a) (‘Optimal’ (37 years); (b) median (53 years); 

(c) predefined from earlier analyses (45, 60 years); (d) popular (10-year groups) 

 

Function selection procedure (FSP)

Choosing the best FP1 or FP2 function by mininizing the deviance (minus twice the 

maximized log likelihood) is straightforward. As we prefer simple models, we consider the linear 

function to be a sensible default. Therefore, unless the data support a more complex FP function, a 

straight line model is chosen. As a strategy for selecting a ‘best’ FP model the following function 

selection procedure (FSP) is proposed (Royston and Sauerbrei 2008). 

 

1. Test the best FP2 model for at the level against the null model using 4 d.f. If the test 

is not significant, stop, concluding that the effect of is not significant. Otherwise 

continue. 

2. Test the best FP2 for against a straight line at the level using 3 d.f. If the test is not 

significant, stop, the final model being a straight line. Otherwise continue. 
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3. Test the best FP2 for against the best FP1 at the level using 2 d.f. If the test is not 

significant, the final model is FP1, otherwise the final model is FP2. End of procedure. 

The test at step 1 is of overall association, step 2 examines the evidence for non-linearity. 

 

The test at step 3 chooses between a simpler or more complex non-linear model. Before applying 

the procedure, the analyst must decide on the nominal -value ( ) and on the degree ( ) of the 

most complex FP model allowed. Typical choices are  and FP2 ( ). 

 

Age as a prognostic factor in breast cancer patients 

We extend the example investigating the effect of age on RFS in patients with breast 

cancer. In Table 1 we give the  values for the influence of age for the 8 FP1 models and the 36 

FP2 models. Assuming a straight line model ( ), age hardly affects RFS.  is 0.58, the 

corresponding critical value of  (1 d.f.) at the 5% level is 3.84. However, considering several 

non-linear models reveals that age has a non-linear effect. The best FP1 model ( ) and the 

best FP2 model ( ) both offer substantial improvements in model fit compared 

with the straight line model. The first step of the FSP compares the  difference between the best 

FP2 and the null model ( =17.61, 4 df, ). This is highly significant. The difference 

from the linear model (17.61  0.58=17.03, 3 d.f., ) is considered in the second step. As 

this test gives also a highly significant result a final step has to decide whether an FP2 model is 

required or whether the best FP1 model is sufficient. The difference 11.20 ( ) is also 

highly significant (2 d.f., ) and an FP2 model with power terms ( ) is selected. 

Figure 2 (left) shows the age functions for the three models, i.e. assuming a linear effect, selecting 

the FP2 function, or categorizing age (cutpoints 45 and 60) and estimating the resulting step 

functions. The functional forms are very different, and assessments based on significance testing 

give different results. Whereas age has no influence if linearity is assumed or if the two cutpoints 

45 and 60 are chosen, a strong influence is indicated when the FP approach is used. As mentioned 

above, the ‘optimal’ cutpoint for age is 37 years. This cutpoint results in a function with a single 

large step (not shown).  

The right part of Figure 2 shows the results of similar analyses for the number of positive 

lymph nodes, a well established strong prognostic factor.Although the effect is highly significant 

with all three approaches, the functional forms indicate a major difference. The step functions (the 

two cutpoints 3 and 10 have been used in clinical decision making for many years) give a rough 

approximation to the FP function, whereas the linear function underestimates the risk for a very 

small number of positive nodes and overestimates it for many positive nodes. 

 

MULTIVARIABLE FRACTIONAL POLYNOMIALS 

In most observational studies, several predictors are available and must be considered in 

the analysis. A suitable multivariable model is required. The aim is often to capture the important 

features of the data: the stronger predictors are included, predictors with weak or no effect are 

excluded and plausible functional forms are found for continuous variables. 

Assuming linearity for continuous variables, backward elimination (BE) is a popular 

approach to determine which variables should be included and which can be excluded. BE starts 

with a model including all variables (often a mixture of binary, categorical and continuous 

variables) and uses significance testing to decide whether the variable with the largest P-value can 

be excluded from the model without harming the fit ‘seriously’. This procedure is done repeatedly 

until the largest P-value of the remaining variables is smaller than a pre-specified nominal 

significance level. Then BE terminates and the model is selected. Variations involving re-inclusion 

and re-exclusion of variables are sometimes used.  

As noted above for age, linearity may be seriously violated and BE may erroneously 

exclude variables with a non-linear effect. As a pragmatic strategy for building models, a 

systematic search for possible non-linearity (provided by the FSP) is added to the BE procedure. 

The extension is feasible with any type of regression model to which BE is applicable. (Sauerbrei 
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and Royston 1999) called it the multivariable fractional polynomial (MFP) procedure.Using MFP 

successfully requires only general knowledge of how to build a regression model. The nominal 

significance level for dropping variables and simplifying FP functions is the main tuning 

parameter. Therefore, reporting of MFP models can easily be done. The importance to report 

sufficient details of the analysis strategy is stressed in recent guidelines (McShane et al 2005).  

 

 
 

Figure 2. Linear, FP and step functions for age (left) and number of positive nodes (right) 

 

Table 1. Deviance differences (compared to null model) of fractional polynomial models for age 

 
Fractional polynomials 

First-degree Second-degree 

Power Model Powers Model Powers Model Powers Model 

p 
2
 p1 p2 

2
 p1 p2 

2
 p1 p2 

2
 

-2 6.41 -2 -2 17.09 -1  1 15.56  0  2 11.45 

-1 3.39 -2 -1  17.57 -1  2 13.99  0  3  9.61 

-0.5 2.32 -2 -0.5 17.61 -1  3 12.37  0.5  

0.5 

13.37 

0 1.53 -2  0 17.52 -0.5 -0.5 16.82  0.5  1 12.29 

0.5 0.97 -2  0.5 17.30 -0.5  0 16.18  0.5  2 10.19 

1 0.58 -2  1 16.97 -0.5  0.5 15.41  0.5  3  8.32 

2 0.17 -2  2 16.04 -0.5  1 14.55  1  1 11.14 

3 0.03 -2  3 14.91 -0.5  2 12.74  1  2  8.99 

  -1 -1 17.58 -0.5  3 10.98  1  3  7.15 

  -1 -0.5 17.30  0  0 15.36  2  2  6.87 

  -1  0 16.85  0  0.5 14.43  2  3  5.17 

  

 

-1  0.5 16.25  0  1 13.44  3  3  3.67 

 

Seven prognostic factors were investigated in the breast cancer example. The final MFP 

model included the number of positive nodes and progesterone receptor, both with a non-linear 

function, grading as a binary variable and age as an FP2 function, very similar to the function from 

a univariate model shown in Figure 2. If we were to include in the model menopausal status, which 

is strongly correlated with age, the functional form for age would differ substantially for patients 



ICOTS8 (2010) Invited Paper  Sauerbrei & Royston 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

older than about 50 years. (see Figure 2 in Sauerbrei & Royston 1999). For further details of the 

multivariable model, see (Sauerbrei et al., 1999). 

 

TEACHING EXPERIENCES 

The material has been presented to audiences with big differences in statistical background 

and in lectures to students advanced in statistical modeling. We have also presented issues in 

handling continuous variables, fractional polynomials and MFP in two-day short courses on two 

occasions: once to an audience with a stronger medical background (clinical epidemiologists and 

researchers in general practice), and once to statisticians working in medical research. Besides the 

basic issues presented here, the course included extensive background to multivariable model-

building and some extensions of FPs, including interactions with continuous predictors. The mode 

of presentation was traditional, comprising lectures with opportunities for the students to discuss 

issues among themselves and raise them with us. We did not include computer practicals. 

We got very positive feedback from both groups of learners at the end of the course. 

However, we were aware that the non-statisticians struggled with some of the more complex 

aspects, particularly of the extensions, necessitating careful and sometimes lengthy explanation. 

Nevertheless, we feel that the concepts and practice of multivariable model-building with MFP are 

well within the grasp of researchers with some statistical knowledge and of masters-level students 

with a basic understanding of regression techniques. We encourage readers to consider putting 

together one-semester courses on the topic. Some specimen talks on aspects of MFP are available 

on the website of our book [http://www.imbi.uni-freiburg.de/biom/Royston-Sauerbrei-book/]. 

 

CONCLUSIONS  

Continuous variables play a key role in many areas of research and in real life. In an 

example we have discussed and illustrated several critical issues when categorizing the data or 

assuming a linear relationship in a regression model, the two most popular ways to use continuous 

variables in data analysis. Most of the discussion has been restricted to a univariate analysis; in a 

multivariable analysis, the difficulties increase. We have presented the key aspects of the fractional 

polynomial approach and its extension for multivariable model building (MFP). We consider it as a 

suitable approach to handling continuous variables in many types of regression models. As the 

basic ideas require only the understanding of polynomial regression and of backward elimination, 

the approaches are potentially acceptable and useful in many application areas. Presentation of a 

FP model is simple and can be done in categories (for a detailed example see section 4.13 of 

Royston and Sauerbrei 2008). Such a presentation allows one to use the result of an MFP analysis 

in medical decision making and many other areas requiring categorization of data.  
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