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The study reported in the present paper is part of a larger project, which aims to explore 
possibilities and challenges in developing a teaching practice that supports students’ ability to 
model random dependent situations by a Bayesian approach. A central premise is that modeling 
should be based on situations that appear realistic to the students. Given this premise, the specific 
purpose of the present study is to identify and characterize uncertain situations that are realistic 
and suitable for a Bayesian treatment. The study involves reviewing some of the literature related 
to Bayesian applications. Based on that review we distinguish detecting (test) situations and 
construction composition situations as two general types of Bayesian modeling situations. 
 
INTRODUCTION 

Models are essential to mathematics. We develop mathematical models to understand the 
world and to predict the behavior of phenomena we encounter in the world (Blum, Galbraith, & 
Niss, 2007). Roughly, we can classify mathematical models into deterministic and stochastic 
models. Deterministic models include a number of elements and relations that completely 
determines a system, i.e. we can make certain predictions of how a system behaves. Stochastic 
models include elements that make it impossible for us to predict the behavior of the system with 
certainty. There is an uncertainty in how the results of a stochastic system will occur, an 
uncertainty we cannot trace to causal factors. Many phenomena are not suitable to deal with by a 
deterministic model. We need to develop models that take into account the random behavior of 
phenomena. 

A frequentist modeling approach is based on the assumption that we can repeat a random 
experiment a large number of times under exactly the same conditions each time. However, in 
practice it is often impossible to repeat an experiment a very large number of times and to achieve 
exactly the same conditions in each trial. Think, for instance, of the simple experiment of throwing 
one die. Is it possible to throw the die from exactly the same angle and height each time? We guess 
not! Moreover, many situations involve the assessment of a probability when we only have data 
from a single, or a short termed, sample. Consider, for example, the situation that you doubt 
whether you turned off the coffee maker before leaving your house this morning. Although there 
may be frequency information on how common it is that people forget to turn their coffee maker 
off before leaving their house, this general frequency offers limited information about the 
probability that you would have done so, exactly this morning. A way to handle these situations, 
where we cannot meet the objective requirements of the frequentist interpretation, is to apply to the 
situation a probability model that is subjective in nature. A subjective model is relative to the 
information available and specified by the modeler of the random situation in question (Goldstein, 
2006). The main objection raised against a subjective interpretation of probability concerns the 
scientific status of results, which is based on and varies with the observer and the information 
available (Batanero, Henry, & Parzysz, 2005). To meet the objections we need to organize and 
formalize the modeling in a scientific way. The Bayesian rule offers a way of structuring and 
strengthening a subjective rationality of probability modeling (Goldstein, 2006). 

The current paper constitutes the initial step of a larger project, which aims at exploring 
and developing a framework for structuring teaching and learning of Bayesian modeling in school. 
A modeling sequence takes departure from some concrete, realistic situation that begs to be 
modeled (Freudenthal, 1983). This precondition means that we should have a rather good picture of 
what kind of situations that are to be modeled by a Bayesian approach. On account of that purpose, 
the particular aim of the present study is to identify and distinguish from a literature review various 
situations typical for Bayesian modeling. The analysis is motivated and guided by the idea of the 
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didactical phenomenology of mathematical structures, which, in turn, provides the foundations of 
the theory of Realistic Mathematics Education (RME) (Freudenthal, 1983). 

 
REALISTIC SITUATIONS AND RE-INVENTION OF MATHEMATICAL MODELS  

Our phenomenology analysis of Bayesian modeling will in particular be guided by two of 
the central, didactical components of RME: (i) the role of realistic situations and (ii) the role of 
models and, particularly, of re-inventing mathematical models. 

The meaning and role of realistic situations should be considered as a critical response to a 
teaching tradition in which mathematics is conceived of as a list of concepts and calculation 
techniques, where reality and materials are used only to concretize and visualize mathematical 
concepts and structures. To Freudenthal, mathematical teaching should be conducted in a reversed 
order. It should start from realistic situations, that is, “from those phenomena that beg to be 
organized and from that starting point teach the learner to manipulate these means of organization” 
(Freudenthal, 1983, p. 32). Important to note is that realistic is not necessarily limited to real 
situations or phenomena. The concept should be understood from a student perspective. Something 
is realistic when the students find it realistic and imaginable. A computer game can thus be 
considered realistic. The importance of this view of realistic situations implies the need for our 
enterprise to invent and characterize typical phenomena to be organized by the structures of a 
Bayesian model. 

Students should be offered opportunities to experience the advantages of organizing a 
realistic situation by specific mathematical structures. As the students are challenged to re-invent 
mathematical models on their own, “the models should ‘behave’ in a natural, self-evident way. 
They should fit with the students’ informal strategies – as if they could have been invented by them 
– and should be easily adapted to new situations.” (Heuvel-Panhuizen, 2003, p. 14). The Bayesian 
rule is a complex model, composed by several ‘sub-models’ (intrinsic structures). If a researcher or 
a teacher should be able to orchestrate realistic situations and discern students’ informal strategies 
related to of some aspects of the rule, it will be necessary to de-compose the rule into a more fine-
grained analytical lens of structural categories. 
 
PHENOMENOLOGY ANALYSIS OF BAYESIAN PROBABILITY 
 The conditional probability of event A, given that event B has occurred, is described by 
  
 
 
 

Rearranging this relation we arrive at 
 
 
 
 Changing the conditional relationship between A and B we obtain an extended version of 
the formula: 
 
 

Rearranging the right hand side, we arrive at Bayes rule: 
 
 
 
 

The main feature of Bayesian modeling is that the modeler tries to estimate or up-date the 
probability of a parameter of a phenomenon after receiving data or evidence of how the parameter 
behaves (Lee, 1989). We use Θ for the set of parameters and E for evidence and arrive at: 
 
 
 
 

 

P(A∩B)=P(B) P(AB). 

P(A∩B)=P(B) P(AB)= P(A) P(BA). 

 

P(ΘE)= P(EΘ)P(Θ) 
P(E) 

(1) 
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The left hand side is the posterior probability of a parameter Θ. The posterior probability is 
proportional to P(E|Θ), which is the likelihood function, and involves as a factor the prior 
probability model of the parameter in question. Generally two parameters may be considered, 
which metaphorically can be conceptualized in terms of failure or success. In the case of the coffee 
maker we ask whether we turned the device off or not (success or failure). 
 
Realistic Bayesian Modeling Situations 

Our survey of realistic situations for Bayesian modeling is based on a brief review of the 
articles published between 2006-2013 in the journal Bayesian Analysis and of tasks used in 
mathematics education for studying aspects of Bayesian reasoning. 

The right hand side of (1) builds on a two-step random structure. First, there is an 
uncertainty involved in the appearance of the parameter P(Θ). Then, there is an uncertainty 
involved in the generation of evidence P(E|Θ). In relation to these two random structures, we 
particularly distinguish two general types of situations from our literature review that ask for a 
Bayesian treatment. These situations are detecting situations (DS) (or test situations) and 
construction composition situations (CCS). 

The Mammography problem used by Eddy (1982) represents a DS. DS are also common in 
situations when a system, such as a computer program or a physical system, is tested (Goldstein, 
2006). Based on (expertise) knowledge about a computer program, the tester models a prior 
distribution of how likely it is that the program works properly (succeed) or not (fail). Next the 
tester develops a test instrument in order to detect how well the computer program works. 
However, there are many possible ways of testing a computer program. It is also nearly impossible 
to develop a completely certain test. Hence, the random process building up the likelihood function 
concerns how well the test instrument is perceived to assess the computer program. In other words, 
the situation does not only ask about uncertainty in terms of failure and success of the computer 
program. It also concerns an uncertainty in the test instrument namely, how well the test is 
considered to succeed in detecting a defected program or to fail in detecting an actual defect. 

A CCS differs from a DS in that it does not involve the modeling of a test instrument. 
CCS’s are comparative in nature. They beg for an inference about how a construction (i.e. a sample 
space) is composed or for deciding on one composition in favor of another. Say that there are two 
factories of the same company, producing the same kind of light bulb. The testing is not an issue of 
uncertainty. We simply put electrical power to the light bulb, and if it lights up it works. The prior 
probabilities P(FA) and P(FB) concern how certain we are that a light bulb are produced by Factory 
A and Factory B respectively, before receiving new data. In this particular situation the two prior 
probabilities are estimated subjectively, but defensibly, on the basis that we find it most convenient 
to assign the two probabilities as the proportions of light bulbs produced by the two factories. The 
likelihood function then concerns the composition of each factory, in terms of their ratio of 
producing defected light bulbs.  

Let Di define the event of i defective items. From statistical evidence and expertise 
knowledge of the production chain, we say that we arrive at the models: P(FA)=0.75, P(FB)=0.25, 
P(D1|FA)=0.05, P(D1|FB)=0.03. A customer has encountered a defective light bulb and we ask; 
what is the probability that it was produced by factory A? The Bayesian rule offers a solution 

 
 
 
 

So, before the customer returns with the defective light bulb we are certain to a degree of 
75% that the bulb we gave him came from factory A. After the evidence from the customer we 
increase our belief of factory A to 83%. After performing the similar calculations for P(FB|D), we 
can update our belief in factory B and compare that to our belief in factory A. This information can 
then be valuable for actions to improve the chain of production, within and between the two 
factories. 
 
 

P(FA D1) 
P(D1FA)P(FA) 

P(D1FA)P(FA)+ P(D1FB)P(FB) 
= = 

0.05•0.75 

0.05•0.75+0.03•0.25 
≈0.83 
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DISCUSSION AND IMPLICATIONS 
Mathematical modeling has increasingly been put forward as important for our students to 

learn in order to cope with and be productive in their everyday and professional lives (Blum et al., 
2007). In the case of probability and statistics, teaching mainly concerns the objective ideas of 
theoretical and frequentist models of stochastics. We know little about the possibilities and 
challenges in implementing a more subjective approach to stochastics. In particular, we claim there 
are needs for more systematic knowledge of the teaching of Bayesian modeling. 

The students are not explicitly present in the current study. However, implicitly they are, as 
the study is motivated by the importance of basing the learning in mathematics on realistic and 
meaningful situations. Through a literature review, we seek to identify and characterize realistic 
applications of Bayesian modeling. From the review, we notice how Bayesian modeling often is 
applied to situations where a product or a process is to be tested and the test involves issues of 
uncertainty. We define these situations detecting situations. Another case of Bayesian modeling 
identified is about making inferences of the composition of a construction or a system, which is 
random in nature. These situations are labeled construction composition situations. 

Implementing subjective stochastics in mathematics teaching is not unproblematic. Often 
subjectivity is considered to represent the lowest understanding of probability (Jones, Langrall, 
Thornton, & Mogill, 1997). This judgment is due to how peoples’ personal assessments of a 
random situation often conflict with the rationality of a formal treatment of the situation. However, 
Bayesian modeling does not imply that every personal opinion is acceptable. It is important that 
teaching develop norms for what should be accepted as an argument for the modeling of the prior 
distribution and the likelihood function. Of course, both theoretical and frequentist arguments 
should be acknowledged. However, exemplified by the practices of a doctor or a criminologist, we 
need to develop students’ ability to take into account information and expert knowledge from other 
sources of information as well. A Bayesian perspective does not disqualify or ignore students’ 
personal knowledge. Instead, students’ experiences and informal reasoning (cf. Makar & Rubin, 
2009) are taken seriously as starting points in developing students’ modeling capacity for 
understanding and making predictions of random phenomena. 
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