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Reasoning about uncertainty is a key and challenging element in informal statistical inferential 
reasoning. We designed and implemented an “Integrated Pedagogic Approach” to help students 
understand the relationship between sample and population in making informal statistical 
inferences. In this case study we analyze two sixth grade students’ reasoning about uncertainty 
during their first encounters with making informal statistical inferences based on random samples 
taken from a hidden TinkerPlots2 Sampler. We identified four main stages in the students’ 
reasoning about uncertainty: Account for, examine, control, and quantify uncertainty. In addition, 
two types of uncertainties–contextual and a statistical–shaped the students’ reasoning about 
uncertainty and played a major role in their transitions from stage to stage. Implications for 
research and practice are also discussed. 

 
INTRODUCTION 

The recognition that judgments based on sample data are inherently uncertain is a key idea 
in statistical inference. This implies that developing an understanding of statistical inference 
requires fostering probabilistic considerations. To support students’ reasoning about uncertainty in 
the context of making informal statistical inferences (ISIs), we developed an Integrated Pedagogic 
Approach (IPA) comprised of data and model worlds. In this case study we analyze students’ 
reasoning about uncertainty during their first stages in making ISIs in an inquiry-based learning 
environment usingTinkerPlots2 (Konold & Miller, 2011). 

 
SCIENTIFIC BACKGROUND 
 
Formal Statistical Inference 

The rationale behind collecting data in statistics is learning about real world situations. 
“Statistical inference moves beyond the data in hand to draw conclusions about some wider 
universe, taking into account that variation is everywhere and that conclusions are uncertain” 
(Moore, 2007, p. xxviii). In its simplest form the question of statistical inference deals with the 
manner of reaching general conclusions about what the true, long run situation is actually like, 
based on outcomes of a sample that can be collected only once. Given only the sample evidence, 
the statistician is always unsure of any assertion he makes about the true state of the situation. The 
theory of statistical inference provides ways to assess this uncertainty and to calculate the 
probability of error in a particular decision. 

 
Uncertainty and Statistical Inference 

The ability to deal intelligently with uncertainty is one of the challenging goals of 
instruction about statistical inference. Furthermore, our intuitive perception of chance profoundly 
contradicts the laws of probability that describe actual random behavior (Tversky & Kahneman, 
1974). People tend to base predictions of uncertain outcomes on causal explanations instead of 
information obtained from repeating an experiment (Konold, 1989).This orientation might be 
problematic in learning statistical inference because students have to consider the relative 
unusualness of a sampling process outcome. 

 
Informal Statistical Inference 

In order to give students a sense of the power of drawing reliable inferences from samples, 
and given that statistical inference is challenging for most students (Garfield & Ben-Zvi, 2008), 
Informal Statistical Inference (ISI) and Informal Inferential Reasoning (IIR) have recently became 
a focus of research (Pratt & Ainley, 2008; Makar, Bakker, & Ben-Zvi, 2011). ISI is a data-based 
generalization made without formal statistical procedures that includes an articulated component of 
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uncertainty (Makar & Rubin, 2009). IIR - the reasoning processes that lead to the formulation of an 
ISI- include “the cognitive activities involved in informally drawing conclusions or making 
predictions about ‘some wider universe’ from patterns, representations, statistical measures and 
statistical models of random samples, while attending to the strength and limitations of the 
sampling and the drawn inferences” (Ben-Zvi, Gil, & Apel, 2007, p. 2). 

 
METHOD 

This study is part of an extended design research (Cobb et al., 2003) of the Connections 
Project (2005-2015) that aims to study children’s statistical reasoning in an inquiry-based and 
technology-enhanced statistics learning environment in grades 4 to 9 (Ben-Zvi et al., 2007). This 
paper focuses on the research question: How can students’ reasoning about uncertainty emerge 
while making ISIs in an IPA learning environment? To address this question, we analyze a pair of 
students’ reasoning while drawing ISIs using TinkerPlots2. 

The IPA was developed to guide the design and analysis of the experimental tasks (as part 
of Manor’s PhD study). It is comprised of data and model worlds to help students learn about the 
relationship between sample and population. In the data world, students collect real sample, 
frequently through a random sampling process, in order to study a particular phenomenon in the 
population. In this world, students may be aware of the variability between samples, but might not 
necessarily account for probabilistic considerations, e.g., the chance variability that stems from the 
random sampling process. In the model world, students build a model (a probability distribution) to 
a known (hypothetical) population and produce data of random samples from this model. Hence 
their attention is paid to a model and to a random process, which produces the outcomes of samples 
from this model. In this world, due to randomness, the details vary from sample to sample, but the 
variability is controlled. That is, given a certain distribution of the population, the likelihood of 
certain results can be estimated. Students in the IPA experiment transitions and build connections 
iteratively between the two worlds by working on the same problem context in both worlds. They 
examine sample results in relation to a hypothetical model of the population. Our hypothesis is that 
the IPA can support students’ development of reasoning about uncertainty when making ISIs. In 
this paper we focus on one task (“The Hidden Model of Social Networks” - HMSN) in the IPA 
learning trajectory that served as a scaffold for bringing the two worlds closer. 

 
Participants 

Yam and Shon, a pair of students (grade 6, aged 12), in an Israeli private school, were 
selected by their high communication skills to provide a window to their statistical reasoning. They 
have participated in the Connections experiment in fifth grade, collected and investigated data 
about their peers using TinkerPlots1. Following the growing samples heuristic (Ben-Zvi, Aridor, 
Makar, & Bakker, 2012), they were gradually introduced to samples of increasing size to support 
their reasoning about ISI and sampling. 

 
The Learning Trajectory 

The IPA learning trajectory encompassed six activities (total of about 20 hours) that first 
introduced the two worlds separately. In the data world, the students planned a statistical 
investigation: Chose a research theme, posed a question, formulated a conjecture, and decided 
about the sampling method and sample size (Act. 1-3). In the model world, they built a 
hypothetical model for the population distribution using the “sampler” (a TP2 object that creates 
models of probabilistic processes and generates random samples) based on their research 
conjecture (Act. 4).In order to encourage the students to examine the connections between the 
worlds, they were asked “what if” questions on optional real data results while exploring samples 
produced by model simulations. To refine students’ understanding of the connections between the 
two worlds, they were given a fifth Activity – HMSN, which is the focus of the current study. The 
students were asked to study a hidden TP2 sampler with unknown data distributions (built by two 
other students) by exploring random samples drawn from this sampler. In the last activity, the 
students returned to their own investigation (from Act. 1-4), explored data and models in the two 
worlds simultaneously by examining the real sample results in relation to their hypothetical model 
of the population. 
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The Episode 
We focus here on Shon and Yam’s discussions during one episode in the HMSN task, 

exploring samples drawn from the hiddenTP2samplerin order to make ISIs. In the beginning, the 
researcher presented the three interconnected attributes of the hidden sampler: Average time length 
that a teen spends on social networks (minutes per day), friends’ number of a teen in social 
networks (#FSN), and grade. They were then asked to draw ISIs based on growing sample sizes, 
but each time they wanted to increase the sample size, they had to explain why. They began their 
exploration with sample size 10. 

 
Data Collection and Analysis 

The activities were entirely videotaped and computer screens were simultaneously captured 
using Camtasia. Interpretive micro-analysis (e.g., Meira 1998) was used to analyze the data. It is a 
microgenetic qualitative detailed analysis of the transcripts, which takes into account verbal, 
gestural, and symbolic actions within the situations in which they occurred. The goal of the 
analysis was to infer students’ reasoning of uncertainty as they made ISIs based on random samples 
taken from the hidden model. 

 
RESULTS 

We identified four main stages in Shon and Yam’s expressions of uncertainty: Account for, 
examine, control, and quantify uncertainty. 

 
Stage I: Account for Uncertainty 

Shon and Yam’s initial understanding was that small samples are not good enough to draw 
valid conclusions: “We can’t take [draw] more than ten [cases in a sample]. It’s pretty bad” [31]. 
At the beginning, they were uncertain about the first sample data that were in contradiction to their 
previous knowledge. For example, Shon doubted that a fourth grade student has 600 FSN: 
“something doesn’t make sense” [45]. Furthermore, they used a hesitant tone in describing the 
#FSN distributions of each grade (“it seems to me that…” [80]) and asked several times to increase 
the sample size. 

They handled this uncertainty in two ways: a) added the #FSN mean to find a signal in the 
data, and b) drew a mean trend line (MTL) using theTP2’s pen to recognize the pattern (sample 1 
in Fig. 1). Restricted by sample size ten, Shon and Yam decided to draw more random samples 
from the hidden model, which only increased their uncertainty level: “It [sample 2] is completely 
different [than sample 1]” [147].Hence, they tried to characterize the variability between the 
samples. 

 
Stage II. Examine Uncertainty 

To examine their uncertainty about the variability between samples, Shon and Yam 
developed the “capture MTLs” method [155] to compare between samples. They kept the MTL 
they drew for each sample on the graph (Fig. 1) and noticed the large variability between the 
MTLs: “It is very different each time” [158], and concluded that “a sample size ten is too small” 
[160]. They consequently handled uncertainty by requesting to increase the sample size to 20.To 
examine their uncertainty about samples of 20, the boys used again the “capture MTLs” method 
and compared the MTLs for three samples (1-3in Fig. 2). 

 
185 S So they [the MTLs 1-3, Fig. 2] get closer, as if they look very similar. One [MTL in sample size 

10] was previously here [points to the left edge of Fig. 2] and one was there [points to the right 
edge of Fig.2]. 

192 S They are more alike. Not very… 
193 Y [The MTLs are similar] not in terms of differences, but in terms of shape, yes. The shape [of the 

MTLs 1-3] increases till here [grades 4-5 or grades 6-7] and then it decreases. 
200 H But what does it mean about sample size 20in comparison to sample size 10? 
201 S It is better [to infer from]. It is a little better. 
202 Y There is still a problem: The peak [the largest mean] here [in MTL1, Fig. 2] is here [grades 6-7], 

but the peaks in these two [MTL2 and MTL3] are here [in grades 4-5]. 
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Fig.1: Comparison of the MTLs of #FSN over 
three samples of size 10. 

 
Fig. 2: Comparison of the MTLs of #FSN over 
four samples of size 20. 

 
In their attempt to account for the variability between the samples, the boys referred to the 

similarity and differences in location, shape and “peak” between the MTLs (Fig. 2). These 
considerations resulted in reduced uncertainty level, although the boys were unsatisfied with 
sample size 20. A fourth sample (MTL4, Fig. 2) surprised them and destabilized their confidence 
regarding the trend. They decided therefore to disqualify the ability to infer from a sample size 20. 
The researcher’s attempt to refine the boys’ level of uncertainty about their informal inferences led 
them to notice different types of uncertainty by examining the variability in #FSN means within the 
grades over several samples. 

 
Stage III. Control Uncertainty 

The boys developed a new graphical method –“capture means”– to capture the variability 
between the means to control the uncertainty. They drew more samples size 20 and evaluated the 
variability of means within the grades by drawing circles to capture the means’ signals (Fig. 3). 

 

  
Fig.3: “Stable” and “constantly varying” mean 

signals over several samples size 20. 
Fig.4: The hypothetical MTL of #FSN over 

several samples size 50. 
 

236 Y Grade 9 students – no [ability to capture the mean]. It [the mean of grade 9] constantly 
changes…Okay, it [the mean of grade 6] stays around here [draws a circle around grade 6means, 
Fig. 3]. 

239 S What can we do? Grades 6 and 7 are the most stable classes. 
 
The boys indicated that there was a difference in the variability of means between the 

grades over the repeated samples of size 20. They drew a circle to capture the mean’s signal – 
allowing for a noise around it– in grades that are “stable” [239], and a ‘X’ in grades that their mean 
was “constantly varying” [236] (Fig.3). This method allowed them to decide whether the sample 
variability is too large within the grades. They used it for several samples of size 20 for each 
distribution to confirm and refine their findings [256]. 

 
246 S In grade 6, I think it [the mean variability] is relatively stable because it [the mean] is usually in 

the area of the circle [Fig. 3]. That’s why I say they [the sample variability] are relatively stable. 
251 Y The mean is usually close to this circle [in grades 4 and 6]. And those marked [by] X [grades 2 

and 9].Okay here [grade 4] also not really… [draw an X on the circle of grade 4, Fig. 3]. 
257 H Is your confidence level in the sample is connected to whether it is close or far? 
263 Y We were able to score only this [the mean of grade 6] [nodding]. 
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According to their innovative “capture means” graphical method, when the means of a 
particular grade could be captured inside a drawn circle, they concluded that the variability within 
that grade was small [248]. Otherwise, the variability was too large, and they expressed higher 
uncertainty about conclusions that could be drawn [263] and about the sample size [265]. 

 
Stage IV. Quantify Uncertainty 

Shon and Yam applied their “capture means” method on larger samples of size 50, drew a 
circle for each grade that captured well the means of that grade over many samples: “Grade 9 stays 
in this area. It really jumps around this spot [draws a circle around grade 4 mean]” [284]. 
Encouraged by their results, the boys expressed higher confidence level and were satisfied with the 
sample size: “[sample of] 50 in my opinion will be enough” [286]. Their certainty about the MTL 
increased and they drew it (Fig. 4) saying they were “absolutely” [290] certain. 

During the next meeting, their sense of confidence encouraged them to refine their 
hypothetical MTL over samples of size 50. They drew a few random samples, but were surprised 
that several of them showed a significantly different trend (“type 1” in Fig.6) than the hypothetical 
trend (“type 0” in Fig. 5): “Here [in Fig. 5], it was an increase [from grade 2 to 6] and now [in the 
new sample, Fig.6] it is a decrease [from grade 2 to 4], [then an] increase [from grade 4 to 6]” 
[392]. Disappointed by the contradicting results, the boys became highly uncertain: “We can’t draw 
an inference, because it is different all the time” [381]. They tried to handle the growing 
uncertainty about the trend by drawing bigger random samples of size 65 and noticed that there 
were more samples with “type 0” trend than “type 1”. To quantify their uncertainty about the trend, 
the boys calculated the difference between the number of samples with each trend, and related to 
this difference as a “breakpoint”. Namely, when this breakpoint equals a certain number, decided in 
advance, it would point at the more likely trend. Setting the breakpoint to three, the boys 
strengthened their previous assumption and rejected “type 1” trend over “type 0” with a subjective 
confidence level of 80%. They explained their high confidence level and even found a way to 
increase it: 

 
463 Y Because we had three times more [cases of “type 0” than “type 1”]. There are still times it’s like 

this “type 1”], but most of the time it’s like this [“type 0”]. 
464 S We will wait until it [the breakpoint] will be more than five. Here again… we’ll wait until it will 

arrive at five…If there’s one more time [a sample with “type 0” trend], then I believe in 90%. 
 
At this point they generalized the meaning of the breakpoint as an estimate of the 

confidence level: The bigger the breakpoint– the higher the confidence level is. 
 

  
Fig. 5: The #FSN means within the grades over 

samples size 50 with trend type 0. 
Fig. 6: The #FSN means within the grades over 

samples size 50 with trend type 1. 
 
DISCUSSION 

The question of this study was how can students’ reasoning about uncertainty emerge while 
making ISIs in an IPA learning environment? In the above illustration we carefully examined Shon 
and Yam’s work in the HMSN task, and found out four stages in their reasoning about uncertainty 
while learning to integrate the data and the model worlds. We describe in this section two types of 
uncertainty derived from the boys’ expressions, the role they played in the transitions from stage to 
stage, and the study’s implications. 
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We identified two types of uncertainty in the boys’ expressions that shaped their reasoning 
about uncertainty in moving between stages: contextual and statistical uncertainty. The contextual 
uncertainty stemmed from a conflict between the boys’ context knowledge and the data. For 
example, when the boys explored a sample size 10, Shon doubted that a fourth grade student had 
the biggest #FSN and said that “it is strange”. Such a conflict increased the boys’ uncertainty about 
the ability to infer from a sample and their context knowledge. The statistical uncertainty stemmed 
from the variability in the data and the sample variability. Disturbed by small sample sizes and 
restricted by the task design, the boys examined by self-invented graphical methods the variability 
between means and MTLS over many samples and the large variability in sample data. These 
situations raised the boys’ uncertainty about inferring from a single sample of a certain size. 

Salient conflicts between data and contextual knowledge that were expressed by contextual 
uncertainty drove the boys to refine their methods of examining, controlling and quantifying the 
statistical uncertainty in their transitions from stage to stage. In detail, exploring data that 
contradicted their previous knowledge in the first stage drove the boys to draw repeated samples 
and examine the statistical uncertainty in sampling variability in the second stage. In their transition 
from the second to the third stage, a surprising sample showing MTL that made no sense pushed 
the boys to control the statistical uncertainty by inventing the “capture means” method. A 
quantification of the statistical uncertainty in the fourth stage was a result of their contextual 
uncertainty regarding their hypothetical MTL. 

Although this short description is far from exhaustive, this study strengthens our 
hypothesis that the IPA can support students’ development of reasoning about uncertainty when 
making ISIs by experimenting with iterative transitions and building connections between the data 
and the model worlds. Authentic inquiry activities in the data world with clear purpose can raise 
the contextual uncertainty in students’ reasoning. Probabilistic considerations in the model world 
can raise the statistical uncertainty in their reasoning. We believe that the boys’ ability to handle 
both contextual and statistical uncertainties stemmed inter alia from their engagement in a learning 
trajectory based on the IPA. We hope to contribute to the important discussion in the statistics 
education community on new ways to combine data and chance, EDA and probability, in order to 
support students’ informal inferential reasoning. 
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