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Students come to formal schooling with prior probabilistic conceptions developed through informal 
experiential events. One such concept is that of chance outcomes being inherently equiprobable, 
even when not the case. In the design-based research described here, a class of 3rd Grade students 
was posed an inquiry problem embedded with non-equiprobable outcomes: What is the best 
addition bingo card? Argumentation was employed as a pedagogic approach to challenging 
students’ equiprobable beliefs, with students supported to develop an evidence-based argument in 
response. Students initially experienced conflict with the realisation of unequal frequencies, then 
developed representations to act as theoretical evidence. A shift from conceptualizing equiprobable 
outcomes towards responses reflecting theoretical distribution was observed. This exploratory 
research suggests potential for an evidentiary focus to challenge probabilistic conceptions. 

 
INTRODUCTION 

Children’s beliefs, language and experiences outside of formal learning can lead to the 
construction of informal probabilistic conceptions, including primary intuitions, heuristics and 
biases, which are inconsistent with accepted theoretical understandings (Amir & Williams, 1999; 
Khazanov, 2008). In the case of young students, these experiences are often generated through 
children’s games which incorporate aspects of chance; for example, card games, games involving 
dice or spinners, and similar chance activities which usually have equally likely outcomes (Amir & 
Williams, 1999). One specific difficulty, among others, which may stem from this, is a tendency to 
assign the same probabilities to all outcomes in all situations (Lecoutre, 1984, in Lecoutre, Durand, 
& Cordier, 1990). These intuitions are shaped over time, and through repeated experiences which 
confirm and reinforce the conceptions held (Fischbein, 1987). This suggests that students need 
early exposure to activities and experiences which align with the prior experiences that enabled the 
establishment of intuitions in the first instance, given there may be potential for unrelated activities 
to add to the schema rather than challenge it. 

Lecoutre ascribes equiprobability bias to students’ lack of perception of compound results 
with students not recognizing that results can be achieved in multiple ways. This is an issue of 
significant interest for educators globally for several reasons: these early probabilistic experiences 
are common across many cultures (Amir & Williams, 1999); even adults with a background in 
probability theory often demonstrate equiprobability bias (Lecoutre et al., 1990); and, these beliefs 
are highly resistant to change (Fischbein, 1987). Lecoutre’s extensive research indicated neither 
experimental modelling nor explicitly showing the compound structure of outcomes acted to 
support students to confront alternate probabilistic conceptions (Durand, 1989, in Lecoutre et al., 
1990). Thus finding other, more successful, approaches to designing learning experiences that 
enable students to bridge from existing conceptions to construction of new ones would be essential.  

Argumentation is described here in terms of its potential as a pedagogical tool in teaching 
and learning mathematics and statistics. Essentially, argument describes both a product and a 
process: the content and structure of the argument (product) and the act of discursively presenting 
the product in either oral or written format (process). McNeill and colleagues (McNeill & Martin, 
2011; Zembal-Saul, McNeill, & Hershberger, 2013) provide a student model of argumentation, 
adapted from Toulmin’s seminal work (Toulmin, 1958; Toulmin, Rieke, & Janik, 1984), which 
incorporates claim, evidence and reasoning. Essentially the claim provides a clearly-positioned 
statement to address a particular problem, the evidence provides the grounds upon which the 
students feel capable of making such a claim, and the reasoning provides the link that justifies the 
claim based upon the evidence (Figure 1). This link incorporates mathematical/statistical rules or 
assumptions and may address aspects of the context. Finally, research suggests that students 
applying themselves to argumentation in mathematics find the addition of qualifiers necessary and 
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useful in order to explicate parameters to the problem solution or to express uncertainty when 
working with informal probabilistic reasoning (Wells, in preparation). 

 
 
 
 
 

 
 
 
 
 
The term argumentation described here refers to epistemic argumentation (Lumer, 2010; 

Siegel & Biro, 1997). Epistemic argumentation theories propose argumentation discourses as those 
which collectively seek ‘truth’. While the goal is to reach consensus, it is a qualified, justified 
consensus, where all parties not only share the final opinion but—ideally—also their subjective 
justification for it. Essentially, epistemological argumentation requires that the validity of an 
argument be evaluated through discipline-based criteria as distinct from, for example, persuasive 
devices (Biro & Siegel, 1992).  

Berland and Reiser (2009) propose three hierarchical levels of explanation and 
argumentation—understanding, explanation and persuasion. These levels are largely determined by 
the goals of sense-making, articulation and persuasion, respectively. The goal of understanding is 
to develop a personal sense of the phenomena under investigation. While evidence is at the core of 
sense-making, it is aligned with inwardly focused belief systems and the evidence may stem from 
observed phenomena, prior experiences, or one’s own attempts to incorporate or align new 
knowledge with existing knowledge; as such, these beliefs remain internalised and thus 
unchallenged. In this instance, this first stage of argumentation can be seen to encompass 
personally held, ‘invisible’ understandings about probabilistic outcomes. The goal of explanation is 
to construct and articulate claims, evidence and reasoning to an audience. Putting students in a 
position that requires them to ‘go public’ situates them in such a way that they need to make their 
links between claim, evidence, and reasoning clear. This ‘visibilising’ of student beliefs enables the 
identification of any primary conceptions the students may have. The final level, persuasion, differs 
in that the goal is to convince others of the discipline-based acceptability of the reasoning advanced 
and to seek to develop the most robust explanation of the phenomena (Berland & Reiser, 2009).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on literature and pilot work, initial hypotheses were incorporated into a model 

(Figure 2) to predict possible implications for evidence as used by students. For example, as 

Reasoning  

Evidence Claim 

Qualification 

Figure 1: Simplified model of mathematical argument 

 
Figure 2: Model indicating potential intereactions between reasoning and goals of 

argumentation and the use of evidence. 
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As the level of reasoning increases then there would be an expectation: 
• That cognitive processes would become increasingly public  
• That the potential for cognitive conflict would increase 

 
• Increased focus on evidence 
• Increased need for quality evidence  

 
• Personal focus would diminish in favour of an outward focus  
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students move towards persuasion, evidence would likely need to stand up to increasing levels of 
external scrutiny and therefore increase students’ need for quality evidence. The model suggests the 
essential nature of evidence in this process, anticipating that as students find weaknesses in their 
own and others’ evidentiary reasoning, they will see that claims must be derived from evidence 
which stands up to scrutiny by others. Hence, as students are confronted with challenges to their 
existing intuitions, they will need to incorporate these challenges into increasingly sophisticated 
schemas which align more closely with normative statistical expectations.  

The research question that is the focus of this paper is: What potential do mathematical 
argumentation practices demonstrate in challenging equiprobability bias in primary students? 

 
METHOD  

The participants reported in this paper were a Year 3 class (7-8 years of age) from a 
suburban public school in Australia. The teacher was experienced in inquiry-based mathematics; 
however, taking an argumentation focus within inquiry was less familiar, having only engaged the 
class in one prior argumentation-focused geometry unit. A design-based research approach (Cobb, 
Confrey, diSessa, Lehrer, & Schauble, 2003) was utilised with the teacher and researcher jointly 
developing a unit around a game of ‘addition bingo’ (Allmond, Wells, & Makar, 2010) to address 
the inquiry question: What is the best card for playing addition bingo? In addition bingo, each 
possible combination of the sum of two numbers (1 to 10) is written on a slip of paper and placed 
in a box (100 sums). Children have a card with a 5 x 5 array of self-selected numbers (their 
predictions based on a theoretical expectation). As each paper is drawn (e.g., 9+6) from the box, 
children mark off the sum (in this case, 15) once if it appears on their card. A player wins the game 
if they are first to mark off all of the numbers on their card.  

If students’ expectations were of equiprobable outcomes, their predicted Bingo numbers 
could be expected to approach a uniform distribution (Figure 3a). However, if the students 
recognised that the outcomes would be represented by irregular frequencies, they could be 
anticipated to select numbers more closely approximating the actual distribution (Figure 3b). 

 

  
 

Figure 3: (a) Uniform (equiprobable) distribution (left); (b) Binomial distribution (right) 
 
Data included student work samples, transcribed videotapes of each lesson, and field notes. 

Analysis was undertaken through several iterations of coding to first provide a general picture and 
identify salient moments that might provide insight into both the argumentation process and 
students’ development of probabilistic reasoning. A second, deeper level of analysis then took 
place with identified episodes and artefacts examined using a combination of frameworks (Corbin 
& Strauss, 2008, p. 40) and mapped against existing literature. In addition, students’ Bingo cards 
were collected and analysed after each of the four iterations to identify shifts in student thinking.  

 
RESULTS  

Students were initially presented with the inquiry problem and asked to fill a 5 x 5 Bingo 
card with the numbers they thought would most likely give them a winning card. The numbers the 
students chose can be seen as a collated group in Figure 4a below. The distribution of these 
numbers more closely reflects the uniform (equiprobable) distribution seen in Figure 3a than the 
theoretical distribution represented in Figure 3b, suggesting students were thinking equiprobably.  
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Figure 4: (a) The collated student selected bingo numbers at the commencement of the unit (left);  

(b) the collated student selected bingo numbers at the completion of the unit (right). 
 
As the class played the first game, several students quickly realised they had selected 

numbers that could not be called (1, 21-25, and 100). As they continued, the students demonstrated 
growing awareness of the unequal distribution, initially noting extremes and then frequencies:  

 
Glenn I can't play anymore. I did two 2's. 
Jess Only 1 + 1 = 2 and that has already been pulled out. 
Paul And I’ve got two 20's. 
Troy There's lots of 12's. I wish I had made the whole thing 12's. 
 
Playing the game had enabled students to test their cards against experimental outcomes 

and began to challenge their initial equiprobable conceptions. Many of the students indicated a 
preference for numbers they had heard called numerous times, suggesting they were focussing their 
evidence on experimental data [1, 3, 8]; however, Sirena raised a link between the experimental 
frequencies and the theoretical distribution [4]:  

 
1 Troy Mostly put 12s on it! 
2 Paul But it might not be mostly heaps of 12s. 
3 Glenn I put five 12s on it. 
4 Sirena Lots were called out and there's lots of ways to make 12. And lots of 12s were called out so I 

did 5. 
5 Teacher Are there any other numbers that would be called out a lot? That there are lots of different 

sums that add up to. Are there any others? 
6 Gideon 15 
7 Teacher Why 15? 
8 Gideon Because I heard a lot. 
9 Teacher Is there a way of working out which numbers are going to come up most? 
10 Paul  …Think about the most ways to make that number win. 
11 Teacher Could you do that? Remember we have been talking about that word 'evidence'? Evidence. If 

you come out and tell me that twelve comes up all the time, I would like some evidence of 
that. I need evidence. Can you prove that 12 comes up the most? 

 
The teacher used this discussion [9,11] to challenge the students to consider the evidence 

they might need to reason to the class that these numbers were more likely to occur in practice. The 
students were motivated to explore this problem of evidence and used a variety of representations 
(e.g., lists, tallies, tables). One student, Paul, represented his tally on a number line, effectively 
constructing a dot plot (Figure 5) which colloquially became known as ‘Paul’s Mountain’.  

 

 
 

Figure 5: Paul's number line tally (Paul's Mountain) 
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At the completion of the activity, students crafted a second ‘best’ addition bingo card. 
After playing a round, they shared their numbers, evidence base, reasoning, and perceived success 
with the community. A noticeable shift towards dominant usage of central numbers occurred; 
however, over-reliance resulted with many students only using a narrow range of central numbers.  

 
12 Gen All I have 12, 11, 10, 9 and 8. And I wrote - they are all highly likely, that's why. 
13 Teacher OK. Paul, what numbers did you have last time? 
14 Paul 11, 11, 11, 11, 11, 10, 12, 9, 12, 13, 13, 9, 13, 9, 10, 12, 12, 9, 11, 9, 9, 10, 11, 10, 13.  
15 Teacher And why did you choose all those numbers again? 
16 Paul 11 was most, the others were the second most, likely. 
17 Teacher How many 11s did you have on your card, Clay? 
18 Clay Twelve. 
19 Paul  But there is only ten 11s! 
 
Once the issue of over-reliance of central numbers had been raised, the students were asked 

to produce a third ‘best’ card, explicating their evidence, and justifying their choices. The students’ 
role was to convince the teacher and class that they had selected the best numbers they could, and 
provide evidence for selecting those numbers. This task was aimed at observing whether students 
acknowledged the theoretical distribution in their responses. Of 17 students who worked on the 
activity, ten provided a dot plot as evidence for their chosen numbers; of these, two provided 
source information (an addition table and a table of possible outcomes) for the data in their dot plot. 
Two students provided addition tables, and five offered no evidence. In terms of reasoning, all 17 
students put forth reasoning, with 14 making reference to the theoretical distribution (Table 1). A 
discernible shift was also noted in the numbers selected by the students for their cards. Figure 4b 
above shows the combined selection of numbers for the final Bingo cards created by the class. This 
distribution more closely represented the theoretical distribution in Figure 3b than the original 
attempt, suggesting that students were now selecting numbers based on envisaged non-
equiprobable outcomes, although an over-reliance on the central number, eleven, was still clear. 

 
Table 1: Students’ reasoning for final bingo card numbers 

 
Underlying Reasoning Sample student comment 
Theoretical Distribution 

Central tendency 11 I chose 11’s because the chance to get 11 is 10/100 which is the best chance of 
the game. All the numbers near have a high likelihood of being pulled out.  

Spread 2 I chose three 10’s, 11’s, and three 12’s because they are the three most popular 
numbers. I chose every other number once because they aren’t so frequent.  

Randomness 1 Uncommon numbers and common numbers because it is a random pick 
Empirical Data  1 I chose the other numbers because they are from my other Bingo card that has 

been crossed out. 
Other  2 I copied Gideon’s card  

 
DISCUSSION AND CONCLUSION  

Literature suggested that shifting tenacious, unchallenged probabilistic concepts may be 
facilitated by creating initial cognitive disequilibrium, and then maintaining that disequilibrium 
sufficiently to enable students’ existing conceptions to be replaced by successively more mature 
concepts. The research described here sought to bring about that initial disequilibrium by providing 
an opportunity for students to test their predicted outcomes (their first Bingo cards) with the 
outcomes of hands-on experimentation (the outcomes of the game). The challenges the students 
encountered as they sought to refine their cards, develop evidence, and convince others of their 
evidence and reasoning, served to maintain the disequilibrium and keep the students looking for 
better models. However, as distinct from Khazanov’s observations of teachers “helping students 
build an appropriate model” (2008, p.184, emphasis added), in this instance students were 
supported and challenged to determine one for themselves and then convince the teacher and their 
peers that they had provided appropriate evidence. In the activity described in this paper, the 
students had difficulty at times articulating their reasoning. However, their choice of numbers for 
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their ‘best’ card suggested they were thinking progressively in terms of a theoretical distribution. 
Young students experience multiple exposures to equiprobable outcomes prior to formal learning, 
and then often in the early years of schooling; Fischbein (1987) suggests these experiences over 
time reinforce these beliefs. A possible implication of this research may be to challenge 
equiprobability bias early, before probabilistic belief systems are heavily entrenched, or at the very 
least, ensure students have multiple, early experiences with games or activities that do not have 
equally-likely outcomes. A second implication may be that argumentation as a pedagogical tool has 
the potential to weaken strongly held schemas and engage students cognitively at a depth that 
enables more normative schemas to develop. Certainly, both ideas warrant further research. 

Maintaining the challenge may also be key. The argumentation model proposed in Figure 2 
suggests that as students share their beliefs, they are more open to challenge: whether by others, by 
responsively crafted activities, or by the students themselves as they struggle to articulate their 
understandings. The focus on evidence, and the challenge for quality evidence, may work to 
support new cognitions and focus students away from personal beliefs towards those collectively 
developed.  
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