
ICOTS8 (2010) Invited Paper Wickham

International Association of Statistical Education (IASE) www.stat.auckland.ac.nz/~iase/

USING VISUALISATION TO TEACHING DATA ANALYSIS AND PROGRAMMING

Hadley Wickham

Rice University, United States of America

hadley@rice.edu

Modern data analysis demands computing skills that most potential statisticians lack. This paper

discusses my approach to teaching data analysis and programming focused around the potential of

visualization to engage students with the data and give them a flexible toolbox with which to attack

many potential problems.

INTRODUCTION

This paper discusses my approach to teaching data analysis and programming with

visualisation at the centre of the experience. My approach has been shaped by my experiences

teaching four statistical computing and graphics classes, two at Iowa State University as a PhD

student (http://had.co.nz/stat480) and two at Rice University as a new faculty member

(http://had.co.nz/stat405).

My students are heterogenous; a mix of upper-level undergraduates, graduate students in

statistics, and graduate students from other fields. Class sizes have ranged between 10 and 30, and

has always been taught in a computer lab. Students' computational and mathematical skills are

hugely variable, as are their previous experiences with data. The computing environment is also

heterogenous. Most students use the lab computers (windows at Iowa State and linux at Rice), but a

number work on their own laptops, which are typically windows or mac.

The aim of the course has always been to teach students how to analyse data and how to

think computationally. These are both critical skills for the applied statistician, and are not covered

in depth elsewhere in the curriculum. Statistical thinking is deeply woven into this course, but I do

not explicitly teach specific statistical methods. This was a deliberate choice to allow me to focus

on low-level tools that are useful for many (if not all) data analyses. However, I do encourage

students to use statistical techniques they have learned in other classes and will provide feedback

on whether or not they have been used appropriately.

The remainder of this paper is laid out around the challenges and opportunities of such a

class: teaching data analysis, teaching programming and the integration of my teaching and

research. Data analysis is a high-order creative skill and is tricky to teach. It requires the mastery of

tried and true techniques as well as the ability to synthesise new variations to address the problem

at hand. Data analysis is a craft, a combination of science and art, and can not be taught with the

same techniques we use for more pure mathematical topics. In Section 2 I discuss how data

analysis was integrated into the course, and how I attempted to build strong data analytic skills in

my students.

In the most recent versions of the class, I have chosen to only use open source software: R

for statistical computing and latex for homeworks and projects. This is ambitious: many students

are intimidated by programming, and few are comfortable with text-based command-line-oriented

software. Section 3 discusses why the command-line (and computational thinking in general) is so

important, and summarises the strategies that I use to help students become productive

programmers.

For me, teaching statistical computing has been a fruitful source of research ideas: if a

topic is difficult to teach, the implementation or underlying theory may be inadequate. In Section 4

I discuss how addressing these inadequacies has been useful for my research program. I conclude

with a summary of my experiences teaching this course, and what I plan to change next time, in

Section 5.

DATA ANALYSIS

Data analysis is a hard skill to teach because there is no simple recipe to follow. One can

point out the broad brush strokes of an analysis (explore visually to gain the gestalt of the data,

create a quantitative model that summarises the key features, then write up in a way that makes the

sequence from data to conclusions sensible and obvious), but every dataset requires a slightly

ICOTS8 (2010) Invited Paper Wickham

International Association of Statistical Education (IASE) www.stat.auckland.ac.nz/~iase/

different approach. My technique for teaching data analysis is to provide many opportunities for

the students to do data analysis and then provide copious feedback on their efforts. Assessment is

particularly important, and in Section 2.1 I discuss how I use assessment to steer students towards

better analyses.

In my class, I focus more on visual exploration and less on quantitative modelling. I expect

students to work mainly with the raw data and produce graphical summaries. I am interested in the

gestalt of the data, not p-values or hypothesis tests or accurate predictions; these can come later and

in other classes. Section 2.2 briefly my approach to statistical graphics, based around the layered

grammar of graphics.

Assessment

Data analysis skills are evaluated and improved with weekly homeworks and three larger

data analysis project. The first few homeworks focus mainly on data analysis, but as the major

projects come online the focus moves towards towards practicing programming skills. This last

year the class culminated in a poster presentation which was attended by many people outside the

class.

I grade data analysis homeworks (and a large component of the group projects) with a

rubric of three components: curiosity, scepticism and organisation. These reflect what I believe to

be the three key attributes of a statistician: they should be curious about data and able to creatively

apply old tools in new ways; they should be sceptical about their findings, always aware that a

result may be the result of chance alone, and on the look out for ways to double check their work;

and they should be able to present their findings in an organised manner that guides the audience

from raw data to results. A copy of the complete rubric is available at the end of the paper.

Teaching statistical graphics

My approach to teaching statistical graphics is based around my research work integrating

the grammar of graphics (Wilkinson, 2006) with R. A strong theory of graphics is very useful for

teaching because students are not limited to a small palette of named graphics, but can create new

visualisations as appropriate for their data.

I teach statistical graphics in the following order:

1. The basics: the scatterplot and histogram. Students are already familiar with these and just need

to learn how to create them in R. I also revise reading these plots and emphasise the importance

of experimenting with the bin width of the histogram.

2. Aesthetics and facetting. The histogram shows one variable and the scatterplot shows two.

What do you do if you want to display more? There are two choices: map additional variables

to other perceptual properties (like colour or size or shape), or display small multiples

conditioned on another variable.

3. Time and space. Temporal and spatial data is very common and requires new plot types: line

plots, choropleth maps and proportional symbol maps.

4. Polishing for presentation. Scales control the mapping from data to things we can perceive and

are crucial for turning an exploratory plot in to a plot suitable for communication.

5. Theory for analysis and critique. Finally, I teach the students the complete theory. It is unusual

to teach theory last, but I find it works best, because the students have seen how useful the

pieces are and are motivated to integrate them into a unified whole.

PROGRAMMING

Why teach programming?

Learning how to program is an important skill for every analyst. While convenient, using a

graphical user interface (GUI) is ultimately limiting and hampers reproducibility, communication,

and automation:

• Reproducibility. If a data analysis is to be a convincing scientific artefact, the trail from raw

data to final output must be available. It is very difficult to do this with a GUI, and it is easy for

mistakes to creep in (for example, accidentally sorting just a column of data in Excel, not the

whole table).

ICOTS8 (2010) Invited Paper Wickham

International Association of Statistical Education (IASE) www.stat.auckland.ac.nz/~iase/

• Communication. Code is a vehicle for communication, not just to the computer, but to yourself

in the future, and to other professionals in your area. It is difficult to communicate how to use a

GUI: click here, then right click here and then choose menu X... Code is easy to communicate

because all important information has a text based representation. This makes it trivial to

supply code to reproduce a particular problem or solution when teaching.

Versions of this course taught at Iowa State (Stat480) also used Excel and SAS. Students

commented favourably on the use of R and SAS: they could see absolutely everything I was

doing and replay it after class, if necessary. When using Excel, it was difficult to tell exactly

where I was clicking (and one pixel can make a big difference). Making replays available was

time consuming, and required video recordings (I explored doing this but never actually did it

because of time constraints.)

• Automation. If you’ve performed an analysis with a GUI, it is difficult to recreate it for new

dataset. This happens often in practice, since data are rarely final - during the process of data

preparation and exploration you are likely to find problems that can be fixed with reference to

the original data. Rerunning a script with a new dataset is trivial.

Some ideas on how to teach programming

Teaching programming is important, but hard. Many students have never programmed

before and are intimidated by the command line. I think many computing classes make a

fundamental mistake when teaching these students: they start with the basics, the formal structure

of the computing language, and the low-level primitives that everything else is built on. My first

time teaching I followed this approach, but it took six weeks of basics before students could

accomplish anything of interest. This made it hard to keep motivated and on-task. The next time I

taught the class, I started with something interesting and useful: graphics.

Now the first day of class teaches students how to open R and create basic graphics with

ggplot2. They may have never used a programming language before and don't know anything

about how R works, but this doesn't hold them back. They start by using the code I provide as a

template, not really understanding what it does, just blindly changing variable names to get

different views of the data. As students do this, they start to learn some important things about

computer programming: the computer is very fussy and you need to make sure you've typed in

everything just right.

I choose to start with graphics because they are visually engaging and can be used to gain

insight into any dataset. By the end of the first week students are equipped with the basic tools of

statistical graphics and can compare different subsets using conditioning and aesthetics. To get

them started with data analysis, the first homework is simple: find three interesting views of a

dataset. During class I stress the importance of iteration: the first plot will never be the most

revealing and so you need to think of each plot as a single step towards enlightenment.

As the class progresses, I support the transition from blind use of templates to a deeper

understanding of the theory that underlies R. I teach how to write functions (and when they are

appropriate) and theories of data analysis and visualization. In conjunction with the larger data

analysis projects this encourages students to assemble the components that they have learned in

class in new and creative ways.

Assessment

As with data analysis, rapid feedback is essential for learning good programming skills.

Assessing code is difficult, and I am still struggling to develop good grading criteria; to paraphrase

Justice Potter Stewart, I may not be able to describe good code, but I certainly know it when I see

it. This is not great for a pedagogical standpoint and I continue to struggle with the best way to

grade code to keep students headed towards better quality.

Currently, my assessment centers around on the notion of code as communication, and I

assess it on three criteria: planning, execution and clarity. Planning grades evidence of thought

before writing the code. Is there a clear strategy, described by an introductory comment? Does the

breakdown of the large problem into smaller sub-problems make the problem easier? Execution

grades mastery of R vocabulary and use of functions - ideally the code should be concise and free

of duplication. Clarity grades how easy it is to read and understand the code.

ICOTS8 (2010) Invited Paper Wickham

International Association of Statistical Education (IASE) www.stat.auckland.ac.nz/~iase/

Coupled with these high level objectives are penalties for poor style. Students need to learn

the stylistic conventions for writing code, much as correct punctuation is a necessary skill for the

written communication in English. Here points are deducted for errors like incorrect spacing and

indenting and overly long lines. This makes the code much easier to read (and thus grade) and

helps to establish a common style amongst students so that collaboration in group projects is easier.

A copy of the complete rubric is included at the end of the paper.

In some homeworks I focus on lower-level skills. A certainly fluency in the basics (data

manipulation, writing functions, identifying errors) is necessary before they can be fluidly

combined to solve bigger problems. To practice these skills I assigned programming drills, made

up of many simple problems. Each problem only requires a few minutes of thought, and stringing

many together helps practice common techniques so that they can be quickly retrieved from

memory. These drills are graded based on correctness with the assumption that most students will

achieve grades of 90\%+.

RESEARCH

Teaching with data analysis and programming has also been valuable for my own research.

Often, parts of R are difficult to teach because they seem to consist of a huge number of special

cases; there is no underlying structure which provides a scaffolding for learning. I have found it

profitable to explore these areas in more depth, investigating whether there are better ways of

solving the same problem in other programming languages, or whether there is an opportunity to

develop new theory.

I have developed better tools for text (the stringr package) and dates (the lubridate package,

with Garret Grolemund) data, by adapting libraries from other programming languages. This is not

novel research, but is a useful service to the community. Other problems have lead to the

development of new theory and associated packages: ggplot2 for graphics; plyr for problems where

you split up a large, complex data structure, process each piece and recombine; and reshape, for

data reshaping (Wickham, 2007).

CONCLUSION

When I first taught this course I was surprised that students who had taken many statistics

classes didn’t have the first clue how to actually perform a data analysis. As I have revised this

course I have focused on data analysis (rather that statistical computing or programming) as the key

theme. I have found teaching programming by starting off with visualisation to be very successful,

and I would strongly encourage others to try it out too.

ACKNOWLEDGEMENTS

I would like to thank Deborah Nolan, Roger Peng, Duncan Temple Lang, Dianne Cook,

Andreas Buja, Heike Hofmann, Luke Tierney and many others for the many conversations that

have shaped my understanding of statistical computing and how to teach it. The “reinventing the

statistical computing curriculum” workshops have also been invaluable. Finally, I’d like to thank

my TA, Garrett Grolemund, who came up with many of the problems used in the drills.

REFERENCES

Wickham, H (2007). Reshaping data with the reshape package. Journal of Statistical Software,

21(12). Online: http://www.jstatsoft.org/v21/i12/paper

Wickham, H. (In press). A layered grammar of graphics. Journal of Computational and Graphical

Statistics.

Wickham. H. (2009). ggplot2: Elegant graphics for data analysis. useR. Springer, July 2009.

Wilkinson, L. (2005). The Grammar of Graphics. Springer.

RUBRICS

The following page includes my rubrics for grading data analysis homeworks and code.

ICOTS8 (2010) Invited Paper Wickham

International Association of Statistical Education (IASE) www.stat.auckland.ac.nz/~iase/

