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We outline the role of the open-source statistical programming environment R (R Development 

Core Team, 2005) in teaching a first course in probability. We show how R, which is freely 

available and downloadable from the web, may be used not only as a tool for calculation and data 

analysis, but also to illustrate probability concepts, to simulate distributions, and to explore by 

experimentation different scenarios in decision making. Recognising that the student best 

understands definitions, generalisations, and abstractions after seeing their applications, almost 

all new ideas are introduced and illustrated with real examples, covering a wide range of 

applications in computer science. While we have addressed in the first instance undergraduate 

students of computing, the approach outlined could also be adapted for students from other 

disciplines. 

 
INTRODUCTION  

In this paper we demonstrate one way to teach a one-semester introductory course in 

probability at the most basic level using the statistical programming language R. Taking advantage 

of its powerful graphical and simulation facilities, we largely replace the mathematics with 

experimentation, and adopt a hands-on approach to learning probability. We begin in Section 2 by 

introducing R and its facilities, and go on in Section 3 to show how R can be used to illustrate the 

basic concepts of probability. After that, in Section 4 we introduce probability distributions, both 

discrete and continuous. Section 5 shows how to use R to deal with applications in queuing, 

process control and machine learning. 

 
LEARNING R  

R is taught from scratch, with no prior knowledge assumed. First the R package is 

downloaded from the web (www.r-project.org/). A file consisting of the examination marks from 

the previous year is given on our website (http://www.janehorgan.com/), and the students are 

required to summarise and provide a graphical analysis of these as part of their practical work. 

Realistic data sets are provided in R, and these are also used. The summary command which gives 

quartiles, mean, median, standard deviation and range eliminates the tedium of the arithmetic 

calculations, and allows the emphasis to be put on understanding their meaning. The data are 

further analysed graphically with histograms (hist), boxplots (boxplot), scatter diagrams (plot), and 

stem and leafs (stem). R is particularly strong on graphics: further graphical procedures are used as 

the need arises throughout the course. 

 
LEARNING PROBABILITY 

The fundamentals of probability are introduced through simulation using the sample 

function; for example sample(c(“H”, “T ”), 10, prob = c(0.5, 0.5), replace = TRUE) simulates 10 

tosses of a fair coin. By changing c(“H”, “T ”) to c(“d”, “g”) and prob = c(0.5, 0.5) to prob = 

c(0.01, 0.99) we could, for example, model a manufacturing process with a 1% defective rate. 

After this, we quickly move on to real probability problems. R is used to compute the 

probability of a match for the birthday problem for varying numbers of people. We show how the 

manufacturers of the Intel chip in 1994 got it wrong when they did not immediately replace a chip 

that they knew was flawed, believing that the probability of the occurrence of the flaw (1/9billion) 

was so low that it would occur only “once in 27,000 years” for a typical user. The probabilities of 

the occurrence of the flaw are calculated for realistic numbers of divisions; for example one billion 

is not unusual in a multivariate regression problem. Probabilities of this order are easily calculated 

using R, and, in the Intel case, shown to be non-negligible. 

We examine the reliability of a product with components in series and in parallel and a 

mixture of both, and investigate the improvement in reliability levels when components are backed 



ICOTS8 (2010) Invited Paper  Horgan 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

up. Figure 1, obtained with plot(k, 1- .25^k), represents the effect of backing up component k times, 

when each component has a 75% chance of functioning.  
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Figure 1. Reliability of Components in Parallel 

 

From Figure 1 we see that four components in parallel appears to be the optimum; any 

more will not improve the reliability substantially while any fewer will result in a noticeable 

decrease. This point is often missed in algebraic considerations. 

 

PROBABILITY DISTRIBUTIONS 

For most discrete and continuous distributions, R provides functions to calculate and 

illustrate graphically probability density functions (pdf) and cumulative distribution functions (cdf), 

to obtain quantiles, and to generate random numbers. Because R treats probability distributions, 

both discrete and continuous, in a unified manner, it is a natural system for a probability course. 

 

Discrete distributions  

We deal with discrete distributions usual in introductory probability courses; the uniform, 

geometric, binomial, hypergeometric and Poisson; dbinom computes the pdf, pbinom the cdf, 

qbinom the quantiles and rbinom selects random numbers for the binomial. Similarly for the others; 

dgeom, dhyper, dpois. The Poisson pdfs in Figure 2 are obtained using plot (dpois(x,  )), with 

differing values of . 
 

 
 

Figure 2. Poisson Distributions 
 

Instead of deriving the mean and variance, we use a simulation approach by generating 

random numbers (e.g,. rbinom, rgeom, rhyper, rpois) and calculating the mean and variance from 

the simulated data. 
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Continuous distributions 

 One stumbling block in moving from discrete to continuous variables is that many 

students have limited skills in integration. The integrate function provided in R overcomes this 

problem. Similar to the approach with discrete variables, the functions rnorm, rexp are used to 

simulate values from the normal and exponential distributions, from which curve (dnorm(x, 50, 

10)) plots a normal curve with a mean of 50 and a standard deviation 10. By changing the mean 

and standard deviation, we investigate how the normal curve changes with differing parameters. R 

has facilities which allows curves to be superimposed on existing graphs; for example the normal 

curve is superimposed on the Poisson pdfs in Figure 2 with 

curve(dnorm(x, , sqrt( )), add = TRUE).  
 

 
 

Figure 3. Poisson Distributions with the Normal Superimposed 

 

Notice that the Poisson density is highly skewed when the parameter is 2. The skewness 

decreases as the value of the parameter increases; at 6 the pdf appears symmetrical, bell-shaped and 

normal-like. 

 

APPLICATIONS 

Because of the powerful computational facilities of R, we can deal with topics in 

probability which would otherwise be too difficult or too tedious in a first course. We illustrate 

with examples in queuing theory, process control and machine learning, all of which can be made 

more interesting and accessible by using the plotting and simulation facilities in R. 

 

Queues   

Queuing theory is relevant and important in many areas of applications, but is not usually 

included in a basic probability course. In courses where it is included, it is dealt with either in a 

theoretical way, an approach which is out of reach of most except the mathematically inclined, or 

by applying the formulas without proof, which is unsatisfactory from the pedagogical point of 

view. Our approach here is to omit the theory, and to concentrate completely on experimentation. 

The familiar M/M/1 queue is introduced using rpois to simulate the arrivals and services with 

various arrival and service rates. Of interest in the study of queues, among other things, is the 

length of the queue and hence the likely waiting time. We investigate the length of queues for (i) 

when the arrival rate is greater than the service rate, (ii) when both the arrival and service rates are 

equal, and (iii) when the arrival rate is less that the service rate. The traffic intensity (I), is the ratio 

of the arrival rate to the service rate. In (i) when the arrival rate is greater than the service rate, the 

traffic intensity I > 1, in (ii) I = 1 and in (iii) I < 1. Using rpois we investigate each of these three 
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scenarios. Figure 4 is an example of the simulated queue length with the three different traffic 

intensities. 
 

 
 

Figure 4. Queue Lengths 

 

Here we see the severe problem when the arrival rate is greater than the service rate (I > 1), 

the length of the queue is increasing steeply. With arrival and service rates equal (I = 1), the 

problem is not as severe, but, contrary to what most people believe, it does exist, and, in the long 

run, it will become serious. The only tenable solution to the queuing problem is to keep the arrival 

rate less than the service rate (I < 1). It makes sense, in this case, to calculate the average queue 

length, mean(queue), We can also estimate the worst case scenario, the longest wait that is likely, 

max(queue), and the best case, the shortest wait, min(queue). By varying the service and arrival 

rates, we also investigate the optimum traffic intensity, i.e., by how much greater than the arrival 

rate does the service rate need to be for a satisfactory throughput? 

 

Process Control 

 Though not intellectually challenging, process control can be interminably boring, because 

of what seems to be the endless repeated calculations that need to be made. With R, these 

calculations can be done effortlessly, allowing the student to concentrate more on the interpretation 

and implications of the results. 

 

The most commonly used technique for detecting changes in a manufacturing process is 

the control chart: this is handled in R using plot. An alternative is to use what is known as a cusum 

chart which accumulates the deviations from the target of the individual observations. In R the 

function cumsum obtains the cumulative partial sums. Figure 5 gives an example of a control chart 

and a cusum chart based on the same set of data. 

 From this diagram, it is easy to see that, with the cusum chart, the change in the pattern 

begins to happen after day 20: from there on the cumulative sums increase steadily. This pattern is 

not so obvious with the control chart, because each measurement is independently compared, and 

so, small changes in the target are often obscured by the residual variation. The cusum chart is 

more sensitive to changes in the process than the control chart; it combines successive results, and 

picks up on changes in the process more quickly.  

 

Machine Learning 

 Machine learning attempts to improve classification accuracy. Individual decisions of an 

ensemble of classifiers are often combined to classify new examples, and a majority decision is 

taken. With R it is easy to investigate the change in accuracy when we know the probability that an 
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individual classifier will be in error, p say. Figure 6 gives the probability of incorrect decisions 

based on a majority result of 21 classifiers, and is obtained by plotting p against 1-pbinom(10, 21, 

p), the probability of more than 10 of the classifiers are in error. The line, superimposed on the 

graph with lines(p, p), illustrates the point at which a majority decision error is equal to an 

individual decision error.  
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Figure 5. Process Control 
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Figure 6. Machine Learning Accuracies 

 

We see in Figure 6 that, when p < 0.5, the majority probability is below this line, which 

means that the probability of making an incorrect classification is less than the error probability of 

an individual. When p = 0.5 the majority and individual decision error probabilities are the same, 

but when p > 0.5, the probability of making an error based on a majority decision is above the line, 

which means that it is greater than the error probability of an individual. So combining classifiers 

and taking a majority decision is the wrong thing to do when individual classifiers have error rates 

greater than 0.5 as it increases the probability of classifying incorrectly. 

 

SUMMARY  

We have given a flavour of our R-led approach to teaching a first course in probability. We 

have shown how to use R to get the students to adopt a hands-on approach rather than memorising 

formulas and carrying out tedious calculations. More details and further examples are given in our 

book “Probability with R”, together with the R code. Interactive tutorials are provided on our 
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website (http://www.janehorgan.com/), and the R manual is downloadable from the web (Horgan, 

2009). 
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