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To support middle school students’ learning of data and chance, we have developed a set of 

classroom activities along with a probability simulation tool integrated into a future version of the 

dynamic data analysis software TinkerPlots (Konold & Miller, 2004). The activities and the 

software were designed to build on students’ current intuitions. In this paper, we describe the 

modeling and simulation capabilities of TinkerPlots and how particular features influence the 

formation of new ideas as students begin to perceive data as comprising signal and noise. 

 

INTRODUCTION 

We have recently designed and tested instructional tasks that involve using the simulation 

component of a future version of TinkerPlots (Konold & Miller, 2004). A main objective is to 

develop understandings of core ideas in data and chance through modeling not only chance events 

(Konold & Kazak, 2008), but also modeling aspects of realistic data (Konold, Harradine & Kazak, 

2007; Konold, Kazak, Lehrer, & Kim, 2007). 

This paper focuses on the probability simulation capabilities of the software and how we 

have been using it instructionally to develop students’ perceptions of data as comprising signal and 

noise. In Konold and Kazak (2008) we elaborate four core ideas we target in these explorations: 

 

• Idea of distribution. We focus on the emergent, aggregate properties of data. 

• Model fitting. Predictions or expectations allow students to assess relevant data. 

• Signal and noise. In data distributions, signal reveals relatively stable aggregate 

properties of distributions and noise is introduced by chance variability. 

• Law of Large Numbers. As a sample gets larger, its aggregate properties tend to get 

closer to the corresponding features (signals) of the actual process or population.  

 

Before giving a detailed analysis of one of the problem contexts we have had students 

explored with TinkerPlots, we provide a brief description of the software and the instructional 

tasks we have been developing.  

 

CONTEXT 

In the Model Chance project, funded by the National Science Foundation (ESI-0454754), 

we have developed simulation component for the data exploration software TinkerPlots (Konold & 

Miller, 2004) and curriculum materials for teaching probability and data in the middle school. A 

major component of the project has been to add to TinkerPlots a general probability simulation 

capability that would allow not only modeling typical chance events, but also building and running 

models of realistic data. Our hope is that by allowing students to model and explore both these 

contexts they can begin to see the chance components of real data.  

As part of the project we conducted four rounds of field tests in different classrooms 

(grades 6 through 8) at Lynch Middle School in Holyoke, Massachusetts. Throughout these field 

tests, we continued to refine both the software and the instructional activities.  

 

TASKS 

The current version of our instructional materials involves three chance-related 

investigations that are interwoven with activities dealing with data during a ten-week of 

instruction. After giving brief description of activities, we then focus on one activity (the “Wink 

Problem”) and describe how we attempted in this investigation to develop students’ intuitions into 

more formal ideas of chance.  
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Three Problem Contexts 

We introduce the Wink Problem as a three-person game that involves blindly drawing a 

disk twice with replacement from a bag. One disk is labeled with a dot (•) and the other with a 

dash (-). If both disks are dots, student A wins. If both disks are dashes, student B wins. If two 

disks are different (•,- or -,•), student C wins the game. We suggest to students to imagine that the 

symbols on the two disks are eyes, which can either be open or closed. Accordingly, we refer to 

(•,•) as “Stare,” (-,-) as “Blink,” and (•,- or -,•) as “Wink.” 

The Family Problem involves exploring the composition of children’s gender in families 

with exactly four children. We first look at a few specific families with four children that we know 

and start organizing them into a distribution according to the number of boys (from 0 to 4) in those 

families. Then we explore how the distribution of number of boys will be shaped as we add more 

and more data to the distribution. 

In the Dice Problem, we ask students to anticipate the distribution of the sums (from 2 to 

12) if we roll two dice 1000 times. Early in the investigation, they select from among five possible 

distributions the shape they expect to get, and then we collect for real data and simulated data to 

compare to their expectation. 

Each investigation described above involves initial predictions about the outcomes, 

collecting data from the actual situation, modeling the situation in TinkerPlots to test predictions, 

constructing the sample space, and testing how closely the simulated data resemble expectations 

based on analysis of the sample space. 

 

AN EXAMPLE: THE WINK PROBLEM 

 

Making Initial Predictions 

Students come to the class with certain conceptions and beliefs about chance events. When 

we ask about their initial predictions, they rely on their primary intuitions (Fischbein, 1975), many 

of which are in conflict with the normative theory, such as representativeness (Kahneman & 

Tversky, 1972), outcome approach (Konold, 1989), and equiprobability bias (Lecoutre, 1992). For 

example, before playing the game with three students in front of the class, we ask students whether 

they think the game, with three players, is fair and to give an explanation. Initially many students 

believe that it is a fair game. One intuition students have is that because there are three possibilities 

determined by chance (-,•; •,•; -,-), “you have equal chance of winning.” This reasoning does not 

take into account, of course, that there are two different ways of getting a wink. Another line of 

reasoning that some students use is that the chances of drawing each disk (- or •) are equal, each 

result (wink, blink, or stare) is chance of each event is also equal. This could be based on 

equiprobability bias or a form of representativeness heuristic. In other words, if the simple events 

are fair, then the combined event is also fair. Even though some students did not consider the game 

fair, they were initially unable to provide a reasonable explanation.  

 

Collecting Data 

Following the initial predictions, we play the game once in front of the class. Then 

students in pairs play the game 12 times using a bag and two chips and record their results. By 

manually collecting data, students have an opportunity to understand the process prior to modeling 

it in TinkerPlots. We record the results of 12 trials from each group and the total of wins in a table 

on the board. Looking at the combined results, the majority of the students will now argue that the 

game is not fair, as wink will have occurred substantially more often than the other two events. At 

this point, most students will express the belief that collecting more data will help them 

confidently decide whether the game is actually fair. Now they need to test their new ideas. We 

suggest to them that each group playing the game 100 times by drawing from the bag. This 

suggestion generally provokes a protest and finally a suggestion that we perhaps can use 

TinkerPlot’s Sampler to collect the data.  

 

Modeling  

We work together as a class to build and run the first model of Wink game. We ask the 

class how to change the default settings of the Sampler to play the game. They instruct us to 
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remove all but two elements from the mixer, to label one with a dash (-) and the other with a dot 

(•), and to draw twice with replacement (see left side of Figure 1). Students seem to be confident 

that the computer version of the game will give the same sort of results as playing the game with 

bag and disks. Facilitating this belief, no doubt, is the close resemblance between the two 

mechanisms (i.e., randomly drawing two objects from a container). 

 

 
A single mixer device is set to draw twice with 100 repetitions. To the right of the mixer is a table which shows the 

results of each repetition as they are drawn. The graph next to the table displays the number of outcomes for each event 

type. In the graph on the far right, the two outcomes (•,- and -,•) are combined into a single bin by dragging one into 

the other. 

Figure 1. Model of the Wink game in TinkerPlots 

 

 Testing Revised Predictions with Simulated Data 

The model of the Wink game built in the Sampler enables students to draw large samples. 

Looking at these data, they rather quickly become convinced that, contrary to their initial thinking, 

the game is not fair. Although they offer that wink seems to be about twice as likely as either blink 

or stare, they cannot at this point give a compelling explanation for why this might be. It is at this 

point we introduce the sample space idea to students as it provides an explanation that they need to 

understand why wink occurs twice as often. We ask them to list all different possible results that 

can happen in the Wink game. We typically see students list either all four simple outcomes or 

only three possibilities (i.e., •,-; •,•; -,-). The latter list indicates an equal chance of winning for 

wink, blink, and stare, but this idea is eventually refuted. Some students argue that depending on 

what you draw from the bag first (either • or -) either the player with Blink or the player with Stare 

will be eliminated from the game. On the other hand, the player with “Wink” will always still be in 

the game after the first draw. This insight also helps students conjecture that wink is twice as likely 

to win. The list of all four possible outcomes makes more explicit that wink occurs twice as often 

as blink or stare because there are two ways (•,- and -,•) to get it but there is only one way to get 

either blink (-,-) or stare (•,•). 

 

 

 

 

 

Figure 2. Four different graphs of results from a sample of 100 games in TinkerPlots 

(I) (II) (III) (IV) 
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To test these revised conjectures, we use the model built in the Sampler to generate more 

data in front of the class. We go through several steps using the various features of the software to 

provide students insights into why the Wink column in the graph is about twice as high as the 

others. We first look at the data arranged as shown in graph I (see Figure 2) where the wink 

outcomes are combined. Next we color the cases by the attribute “Join” (graph II) and ask students 

what they notice about the Wink stack. Now they can see that it comprises two different colors. 

We then order the cases as shown in graph III and separate the Wink column into two outcomes by 

dragging a case icon to the right (graph IV). This last action finally reveals that there are four 

simple outcomes, two of which form the event “wink.” 

 

To make the first graph of the results in TinkerPlots, one needs to combine the two 

outcomes (•,- and -,•). Hence, we initially anticipated that dragging the two outcomes together 

would focus students’ attention on the fact that there are two different ways of getting wink. 

Surprisingly, only a few students in our classroom tests of this problem have come to realize that 

the event “wink” is comprised of two outcomes in the process of creating the graphs. The fact that 

both outcomes (•,- and -,•) are called wink perhaps encourages students to think that “they are the 

same thing” and that the order, therefore, is not relevant. Accordingly, developing the sample 

space becomes an important component of the activity. 

After listing the four possible things that could happen, we rearrange them to form the 

expected distribution for the three events: wink, blink, and stare (Figure 3). This displays the 

expected relative frequencies of occurrences of each event. According to this model, wink should 

occur twice as often as blink or stare. This theoretical distribution helps students perceive the 

simulation data in a new way – as a noisy version of the expected distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Expected distribution of event types in the Wink game 

 

To support this perception, we introduce sketching as a means to keep record of the 

empirical results from the computer simulation. This helps students connect expected results with 

simulated data. We instruct students that the key to making a sketch of a distribution is to pay 

attention to overall shape and to relative heights of stacks in the graphs rather than to such details 

as exact frequencies. We take this holistic approach because in our first classroom testing, students 

tended to focus on exact frequencies in the results and to interpret the small differences in the 

heights of the stacks as significant even in large samples. 

After the introduction to sketching, students use their models built in TinkerPlots to draw 

multiple samples to compare the distribution of results to the expected distribution based on the 

sample space. They sketch the results they get from five successive samples of 100 and then from 

2500 repetitions. To develop the idea of sample-to-sample variability in relation to sample size, we 

discuss for each trial how closely the actual results from a trial resemble (or fit) the expected 

distribution. We also run samples of 20 repetitions in front of the class and have students watch the 

heights of the stacks compared to the expected distribution to see what happens as we increase or 

decrease sample size. The observation that as the samples get larger and larger, the results will get 

closer to what we expect helps to establish an understanding of the relationship between the 
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sample size and the fit between the model and observed results. This we view as a qualitative 

understanding of the Law of Large Numbers. 

 

CONCLUSION 

In the investigations of chance events, we initially have students predict and explain the 

real data, physically collected. Having noticed a misfit between the actual data and their 

expectations, students typically begin to question their initial expectation. This motivates the need 

to collect more data and, in turn, the need to using the simulation capabilities of the computer. 

The Sampler in TinkerPlots allows students to build a model, run large numbers of 

repetitions in multiple trials, and display the data as they are gathered. Analyzing the situation with 

more data spurs students to develop new conjectures about the situation. We introduce the sample 

space as both an explanation for the results they see as well as the basis for predicting what they 

will see as they collect more data. 

Finally, students tend to focus on the differences between the expected distribution based 

on the sample space and the simulation data. With this new perception, they come to see these 

deviations as “noise.” By varying the sample size (small vs. large samples) students can observe 

the noise increasing or decreasing. This helps them develop a general understanding of the Law of 

Large Numbers—that as the sample size gets large, the observed results tend to get closer to the 

expected distribution based on the sample space. 

In these investigations, the computer tool plays a central role. Without the software it is 

not possible to gather enough data in the classroom to observe results settling down on 

expectations as they sample size gets large. Furthermore, the software allows students to see this 

settling down happening dynamically, in real time. Below we summarize the key aspects of the 

use of TinkerPlots in our chance investigations: 

 

• In building a model of a situation, the software allows students to choose from various 

Sampler devices, such as mixers, spinners, or distribution objects, and to draw from a 

single device repeatedly or ” “in-line” from multiple devices (a feature not described 

above). Students generally can build an appropriate model with little or no support. The 

device preference usually varies based on the context. For instance, we expect due to the 

close resemblance to the real situation (randomly drawing two objects from a bag), most 

students model the Wink problem by draw twice, with replacement, from a single mixer. 

• Using the model built in TinkerPlots, students can generate large amounts of data quickly 

over and over. This allows students to articulate their informal theories about chance 

situations and then put them to the test. 

• The TinkerPlots environment facilitates students’ visual reasoning via dynamic graphs 

where the results accumulate as they are generated by the Sampler. Through observing the 

simulation data from multiple trials coupled with the sketching activity, students can 

explore the fit between the expected distribution based on the sample space and the 

empirical data. As a result of these observations, students begin to perceive data as signal 

and noise. 
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