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To understand risk, you have to connect statistics and probability. That makes risk a hard topic, 

but risky contexts are also interesting and meaningful; one can argue that they are some of the 

most important for our citizens to understand. The Data Games project is developing web-based 

games and lessons. These games produce data—often a lot of data—that students analyze in order 

to improve their performance. This paper discusses the role of risk in curriculum choice, and our 

experience field-testing one of these activities in US schools with students ages 16–18. 

 

Risk is part of our everyday lives, and the lives of our students. How should we do “risk 
education?” We want to help students reduce “serious” risk: from drinking and driving, from 

smoking, or from risky sexual behavior. Alas, “serious” risk is earnest and adult, laden with 

societal rules. More to the point for this paper, a typical class discussion of these risks won’t 
expose students to the interesting mathematics of risk and how ubiquitous risk can be.  

Risk is a natural part of any phenomenon with a cost and an uncertain outcome. There are a 

number of ways to study choices, for example, using cost-benefit analysis. But let’s simply look at 
gambling as the prototypical risky activity.  

In gambling, there’s a winning payoff W with a probability P, and a cost for each play C. 

That means that on the average, you will win WP on every play. We call WP the expected value of 

your winnings. If WP > C, playing the game is a winning proposition; if WP < C, the game will 
lose you money; and if WP = C, we call it a fair game. But expected value is a slippery concept; 

it’s not obvious that this “average” win (which never actually happens) is really the right quantity 

to use in analysis. 
But let’s move on for now. In gambling, P is usually small and W is positive, that is, it’s 

unlikely that you will win, but you pay the cost C hoping to “get lucky.” Many other real-life 

situations are similar to gambling, but inverted: the low-probability outcome is negative—i.e., to be 

avoided—and we risk it to get the small benefit C that we receive every time we “play.”  
We saw an example of this attending a conference in Singapore (ICOTS 5, 1998), where 

fares are not collected on the public buses; you’re supposed to buy a ticket and have it with you. 

We spoke to a rider who had essentially done the calculation: if you don’t buy a ticket, you save 
the fare—let’s call it 1. The fine for not having a ticket is 50. If they check tickets fewer than one 

ride in 50, it pays to cheat. (Despite Singapore’s vaunted law-and-order reputation, the rider had no 

ticket.)  
 

INSURANCE 

Another real-life phenomenon that involves risk is insurance. We pay a premium C; if the 

unlikely dreaded event occurs with probability P (a fire, an accident, theft, the ship sinks), we’re 
covered for our loss W. Students, for the most part, have never dealt with insurance, so an activity 

focusing on the principles of insurance not only gives students an application for expected value 

but also insight into part of their likely financial futures. What will it teach them about risk? We’ll 
see.  

A task exploring insurance might go something like this: 

 
A truck loaded with tacks has overturned at the beginning of winter on a frozen 

highway in North Dakota. For various reasons, it will be impossible to clean up the tacks 

before Spring, and the highway must remain open. As a consequence, there are many more 

flat tires on this stretch of road than usual. You take on the role of an insurance company. 
You sell insurance to drivers, agreeing to pay for a tire ($100) if they get a flat. The 

number of policies you will sell depends on the price you set, according to this formula: 

 

 N = 2000(1 C) where C [0,1]
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where, as before, C is the cost of a policy. That is, if you give the policies away (C = 0), 

you will “sell” 2000, but if you charge a dollar or more (C  1), no one will buy them; and 

the demand curve is linear in between. 

The probability that a vehicle gets a flat is P = 0.002. What price should you charge for 
insurance to maximize your profit? 

 

At this point, the astute and experienced reader will recognize that there is a quadratic 
relationship between the price and the profit; in fact, if P < 0.01, the maximum of that profit curve 

lies in the range 0 < C < 1. In particular, given the demand formula above, we can compute the 

expected income I: 
 

 
 
and because we expect NP flats, the expense E: 

 

 
 

which means that the expected profit (yield) Y is 

 

 
 

If P = 0.002, (an average of one flat per 500 vehicles), this becomes 
 

. 

 
This function is quadratic in C, opening down. It has zeros at C = 1 and C = 0.2, so has a 

maximum halfway between, at C = 0.60. At that price, you sell 800 policies, for an income of 

$480. You expect only 1.6 flats in 800 policies, a cost of $160—yielding an expected profit of 
$320. 

This is the “official” solution using algebra. To produce this solution, a student has to 

understand expected value pretty well, and must construct the appropriate income and expense 

functions. We can give these students interesting follow-up tasks, for example, to explain the two 
zeros. (The one at C = 0.20 represents the zero-profit point when your expected pay-outs equal 

your income from premiums; the one at C = 1.0 gives zero profit because you don’t sell any 

policies.) 
This approach, however, is very “mathematical” and idealized. It’s also quite hard. To be 

sure, it lets students apply the theory of expected value, but it may not prepare them well for real-

life decision-making. Let’s add some data. 
 

A DATA-ORIENTED RISK ACTIVITY: FLOYD’S OF FARGO 

Let’s look at an activity we have recently developed as part of the DataGames project 

(Finzer, 2009). This activity is based on a “manual” game of the same name (Erickson, 1985). 
The back-story about the tacks is the same, and so is the model, but instead of knowing all 

the relevant parameters ahead of time, students play a game on the computer where they set 

premium prices and see the results of their decisions: how many people bought policies at that 
price, and how many of those got flats. Their goal is to make as much money as possible in ten 

turns. 

This lets students approach the problem empirically. Instead of doing symbol manipulation, 
they do repeated trials at different prices, and learn from experience that no one buys your policy if 

you charge too much, and that if you charge too little, you lose money from having to buy too 

I = NC = 2000(1 C)C

E = 100NP = 100(2000)(1 C)P

Y = I E

= 2000(1 C)C[ ] 100(2000)(1 C)P[ ]
= 2000(1 C)(C 100P)

Y = 2000(1 C)(C 0.20)
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many tires. They can estimate the optimum by inspecting a graph of profit as a function of 

premium price. In the graph in Figure 1, it looks like the best price is near 60 cents. 

 

 
 

Figure 1. Graph of profit as function of premium price 

 
Hard-nosed teachers might object that this defeats the purpose of all that lovely math. You 

could, if you wish, think of the empirical game as an introduction to theoretical techniques, 

designed to help confused students ground their formulas in some practical understanding. But 
that’s not the only reason to use a game with data instead of simply presenting the classic problem. 

For one thing, the game lets us include variation. In our initial implementation of this 

game, the demand model—the number of policies sold—is as described above, but the number of 
flats is not set deterministically to the expected value as in the previous graph. Instead, it follows 

the appropriate binomial distribution based on the probability. A typical graph from a simulation is 

shown in Figure 2. 

 

 
 

Figure 2. Typical graph from a simulation 

 
The variation has several important curricular consequences: 

 

• First, variation makes the data seem more realistic even though they are clearly coming 

from a computer simulation. This may fluster some students who expect all the points to 
“line up,” but it may also make the activity more appealing and less “mathy.” 

• Second, variation lets us ask deeper questions about the graph. We can ask students to 

explain what the “stacks” of points mean in the context of the tires and tacks. This is not 
trivial for many of our students, and gets at the root of understanding what a graph is 

saying. For example, several statistics students in a field test looked at a graph like the one 

above and said, “it’s a normal distribution.” They confused the hump in this bivariate plot 
with the one in a univariate distribution—an example of not really thinking about what the 

graph was showing them. 

• Next, we can ask what gives rise to the variation; that is, students need to explain and 

understand that you get different numbers of flats on different runs even with a constant 
probability. 

• Finally, with more sophisticated students, we can ask about the nature of the variation. 

Does the distribution for a given price seem to follow the expected binomial? Are there 
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outliers? How does the variation vary with the premium price? How does it affect your 

estimate of the optimum price? How many trials do you need at a given price to get the 

information you need? 

 
Interestingly, faced with the graph of their data, many field-test students (20 17–18-year-

olds in a non-AP statistics class) wanted to fit a quadratic to the data—because it looked quadratic, 

not because of any analysis. They were using Fathom (Finzer 2000), so they did so using various 
techniques, including using variable parameters as described in Erickson (2008). They tended to 

use vertex form, with a result like Figure 3. 

 

 
 

Figure 3.Vertex form 

 
When we asked them what their best estimate for the optimum price was, they could read it 

directly from their function, in this case, $0.592, the number in the “vertex” place in the function. 

(This is the slider h in the illustration.) 

These students are a long way, of course, from doing the formal analysis we described 
above. They have not developed symbolic expressions for income or expenses, or combined them 

into the quadratic for profit. They have not figured out why the relationship is quadratic. 

Left to their own devices in our classroom trial, they did not even do what we might do 
first: they did not estimate the probability of a flat. To prompt this gently, the default state of the 

game is simply “watching”: you watch 2000 vehicles drive the road, and see how many get flats. 

When, at the end of class, we asked students what the probability was, they estimated it quickly, 

but the fact that this did not occur to them earlier is interesting. Why didn’t they? One possibility is 
that since they were able to make a model without it—albeit a purely empirical model—they saw 

no need.  

These students had just been learning about expected value, so when we then asked them 
how much income they would get at a particular price, and how much, on average, they expected to 

pay out, they did these calculations immediately (using that estimate for P). They had not 

developed the theoretical model, but given their facility with quadratic functions, they were clearly 
capable of it. So what can we conclude from their approach to the situation?  

We can’t know the details without further inquiry, but here are some conjectures: 

 

• If you aren’t given the probability in a problem, you’re less likely to use it. Students are not 
trained to estimate empirical probabilities to be used later to solve a problem. 

• Having to do the observations to estimate a probability is an additional barrier: after all, 

real observations give varied results. Compare a “book” version: “10,000 vehicles drove 
through the tack zone and 20 got flats. How much would you charge as an insurance 

premium if a tire costs $100?” Here the experienced student knows that this means P = 

0.002. Variation doesn’t come into it. 
• Without variability in the data, data points would line up perfectly, and students would be 

more certain of the values of the parameters in their models, and more likely to wonder 

where those values came from. With variation, a model that fits is good enough. Students 

accept its parameters and don’t worry about why the parameters have those values. 
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As teachers, we might decide to prompt students with tasks that lead to our desired 

analysis: e.g., have them estimate the probability before they go on to the rest of the activity; or 

insist that they plot the number of policies sold against premium price (as in Figure 4). 
 

 
 

Figure 4. Plot of number of policies sold against premium price 
 

We could ask other leading questions as well, but should we? Here are some observations: 

 
• Having the tools, skills, and inclination to make a quadratic model, students did so 

successfully. 

• Their empirical model gave them an “answer”—the optimum price—that was as good as 

any we would get. 
• It did not seem to bother them that they had no reason why their quadratic model might 

make sense. 

• The quadratic result we so want students to discover depends on the artificial and 
deterministic linear demand curve.  

 

We have to ask ourselves how much we care about the theoretical solution. Is it important 
that students understanding how that modeling works? Will they truly understand the situation or 

just the algebra? Furthermore, do students benefit from understanding the situation through data 

even if they never understand the details of the model? It might be enough for many of our 

students. 
 

THE INDIVIDUAL PERSPECTIVE 

Even if we were to answer those questions to our satisfaction, we would still miss part of 
our original goal: to help students assess risk, and, ideally, use mathematical understanding to make 

more informed decisions in risky situations. The problem is that we have taken on the role of the 

insurance company—a whole-system viewpoint—rather than that of the individual driver.  

Suppose we let students be the drivers in our simulation. If they can choose whether they 
should buy insurance, most of the time they would not get any flats. In fact, in a class of 20 

students each playing 10 turns with P = 0.002, there is a 2/3 chance that no one will have a flat at 

all. With that experience, buying insurance seems foolish—to everyone except the rare loser who 
gets a flat.  

Reflecting on this helps us see that insurance is, after all, a commons situation (Hardin 

1968). The commons is relevant to many problems in the world today, particularly regarding 
shared resources. From a curriculum design point of view, then, we have a problem, and as 

educators of future citizens, we see its importance: How can we help students make good 

individual decisions when they seem to go opposite the best policy decisions? 

We are still working on this problem, but here is an idea for a direction to try. 
 

HAVE STUDENTS INVENT STORIES 

In the “policy” perspective, we simulate many experiences so that we can see the aggregate 
result. The problem is that the individual cases—such as the few people with flat tires—fade into 
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the background, and students are not invested in them. But we could ask students to find individual 

cases and tell their stories; I predict that students will preferentially pick outliers because they are 

the interesting cases.  

Asking students to tell stories about simulated people may seem odd, but we have seen 
them do it spontaneously, and have incorporated that idea into other activities (e.g., Turning 

Numbers into People, Erickson, 2000).  

This requires two things of the software. First, we need to simulate cases where the 
personal decision goes both ways, that is, some people buy insurance and others do not. Second, it 

might help to dress up the data, adding information about the drivers. We could do that with 

Census data, but it may be enough simply to give them names. 
One can imagine doing this with more meaningful problems and choices than buying tack 

insurance. For example, we hear that texting while driving increases your risk of an accident by a 

factor of 23 (Box, 2009). We can program the simulation to use accident rates of (say) 1:23,000 

and 1:1,000 per day. An individual driver is still unlikely to suffer consequences of texting in the 
short run, but we can simulate 100 drivers for a year, and let half of them text. 

That will give us dramatic graphs of aggregate data, but they might not get students to look 

seriously at consequences of their decisions. If we let students tell a story of someone from the data 
set, however—Amelia, who has two kids, works as a hospital administrator, and had an accident 

while texting—the students will identify with them; the former statistic becomes a person. 

It would be interesting to see whether a program of data-oriented simulations using these 
techniques could lead to (or interfere with) a better mathematical understanding of risk and 

expected value. We also wonder what range of students might be interested in exploring this 

mathematics and, of course, whether that exploration has any impact on choices they actually make 

in the course of their lives. 
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