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When it comes down to understanding, predicting or optimizing business, the tools provided by 

statistics form an important corner stone. Training of statistics at university level is a crucial 

factor here and should be well aligned with the actual needs after graduation. Those needs depend 

on the actual business type involved, and are approached here from an engineer’s point of view. 

We will briefly touch some general trends and issues that might be considered when forming the 

new generation of engineers and statisticians. 
 

INTRODUCTION 

When looking at history, statistical methods were often introduced in science and 

engineering disciplines by statisticians that were primarily great scientists–chemists, engineers, 

agronomists such as Fisher, Box, Tukey, … It was advantageous that those researchers clearly 

understood the way engineers and scientists thought, and they had a clear understanding of the real-

life problems. In a sense, they developed new methods starting from these real life problems and 

not so much from a pure theoretical, fundamental/statistical point of view. As McGregor (1997) 

states, the period of early developments in statistics up to the 1970’s might be considered to be the 

“golden years of applied statistics”. From the 70’s on, a shift towards statistics as an increasingly 

mathematical discipline can be observed, and advances in applied statistics were only limited. This 

shift can be attributed to the fact that the leadership in the statistical disciplines passed on to a new 

generation of mathematical statisticians.  

During the most recent decade, there seems to be evidence that we are once again seeing a 

major shift in the leadership and direction of the statistical community. This new era is being 

catalyzed by new developments in the broad field of engineering and quality control: novel sensor 

technologies entered the broad market for laboratory quality assessment, a focus on online process 

control, the availability of powerful data acquisition and processing systems, ... The availability of 

such systems has totally changed the nature of the data we are dealing with: we now live in a 

highly multivariate, data-rich society and are being inundated with data from all directions. 

This change in data characteristics that we are exposed to in daily routine has opened the 

door to the need for new statistical methods that are capable of handling such large volumes of data 

that are collected within narrow time spans–often thousands of variables are measured in a fraction 

of a second. Not only the processing of such datasets but also the interpretation forms an important 

aspect of the daily activity of our new generation of statisticians–from communications, image 

analysis, biotechnology, management to chemistry and process industries–so that quantity is 

translated into quality.  

We believe that it is crucial to consider these trends when forming the new generation of 

statisticians–a generation that might have a bright future ahead when scientists that are the owners 

of the problems and statisticians mix ideas, paralleling the earlier era of applied statistics. 

This paper focuses on the shift in data characteristics of the modern world and treats some 

general and specific issues that might be considered when forming the new generation of 

statisticians. It encompasses issues such as multivariate data analysis, statistical process monitoring 

and sequential design of experiments. 
 

DATA CHARACTERISTICS 

Engineering is a rapid changing discipline that is characterized by an ever increasing 

amount of automation. The higher degree of automation and related increasing production speeds 

required together with the strong expectations of the customers have lead to the development of a 

broad range of novel sensor technologies that all produce mass data in a fraction of a second, at a 

cost efficient price. One can think of cheap camera technologies, vibration sensors and optical 

sensor technologies to name a few. Related, also the computer power has increased significantly, 

so that engineers have available a broad range of tools for attaining their goals. Those 

developments have as a consequence that the type of data and the way they are collected is subject 
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to change. Whereas the engineer would have had information about one single quality 

characteristic of a limited sample of the total production batch some decades ago, nowadays he 

may have collected hundreds or even thousands of different characteristics of each and every 

sample, possibly even with repeated measures over time.  

Consider for instance the case of apple quality, for which color and internal quality are of 

utmost importance. The classical ways of assessing those attributes are often time consuming, 

subjective and destructive. A potential buyer of a stock of apples would quantify apple color using 

a simple color card score, whereas the internal quality is measured by a destructive test – pinching 

out a piece of apple flesh that is further used for sugar content measurements. This process is 

typically performed for a small number of apples, and the result is generalized over the whole 

batch. These classical methods for quality assessment are nowadays replaced using rapid, 

nondestructive sensors: a Near Infrared (NIR) sensor that produces light absorption information for 

a large number of wavelengths (spectra)–typically more than 100–gives accurate information about 

the internal quality and skin color. Such methods are able to inspect 10 fruits per second and are 

not only applied for offline use, but are recently also used for online purposes, inspecting each and 

every apple on a conveyor belt. An example of such spectral data is given in Figure 1 (left). Very 

typical in such datasets is that the number of variables exceeds the number of samples analyzed, 

and that the correlation among the different variables is very high (say, r > 0.9).  

When talking about quality of a given process or product, it is also important to stress that 

quality itself is more often than not a multivariate property and must be treated as such. By this it 

is meant that a high quality product must simultaneously have the right combination of all the 

individual aspects. Each individual aspect by itself has little meaning. 
 

HIGH DIMENSIONAL DATA EXPLORATION 

Good statistical practice includes a data exploration step as the first critical step to go 

through once the data are collected. In case of low dimensional data, simple histograms, scatter 

plots or scatter plot matrices that visualize two-by-two relations amongst variables are easy to set 

up and to use. They offer the investigator a quick overview of possible outliers, the spread in the 

data and, in case of more than one variable, of the correlation structure. Besides graphical data 

exploration also simple statistics aiming at the detection of outliers are well described (Kutner et 

al., 2004). Due to the ease of use, the data exploration step is seldom a stumbling block for 

practitioners.  

When the dimensionality of the data increases, the crucial step of data exploration becomes 

less straightforward and it is generally known that finding outliers becomes more difficult in such 

cases (Rocke & Woodruff, 1996). For the spectral data depicted in Figure 1 it is far more difficult 

to detect outliers using higher-mentioned graphical displays such as histograms or scatter plot 

matrices. Indeed, when inspecting one variable at a time by means of histograms, every data point 

might be considered “in control”, but when including the correlation structure this data point may 

be a multivariate outlier. Techniques that provide quick evidence of outliers in high dimensional 

datasets are very useful. The Hotelling’s T  statistic for instance provides a quick measure for 

outlyingness. However, in cases where the correlation among variables is very high (r > 0.9) and 

the number of variables becomes larger than the number of samples, the Hotelling’s T  is 

inappropriate and alternatives are needed. 

Dimension reduction techniques often provide a useful means both for graphical inspection 

as well as for more quantitative analysis. One of the most widely used dimension reduction 

techniques is Principal Component Analysis (PCA). PCA involves a mathematical procedure that 

transforms a number of possibly correlated variables into a smaller number of uncorrelated 

variables called principal components. The first principal component accounts for as much of the 

variability in the data as possible, and each succeeding component accounts for as much of the 

remaining variability as possible (Jolliffe, 2002). In highly correlated datasets such as spectral data, 

the first two principal components often explain a substantial amount of the total variability (say, 

more than 50 %), and a projection of the dataset onto these first two principal components provides 

already a first quick view upon the dataset. Gabriel (1971) added to this plot also the loadings–the 

relative importance of a certain original variable for a given principal component to form a so-

called biplot. Biplots are useful tools for multivariate exploratory data analysis not only for 
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detecting groups or outliers in the dataset, but also to visualize the correlation structure among 

variables in the dataset. 

A PCA analysis can be used for some more quantitative analyses as well. One can use the 

distance between the actual data point projected onto the PCA space and the centre of the space 

(the so-called Hotelling’s T  statistic but now based on the principal components instead of the 

original variables) to detect points that have a “normal” correlation structure but which are in a 

sense shifted. Alternatively, the Q statistic (also referred to as the Squared Prediction Error, SPE, 

statistic) provides useful information about points that do not comply with the “normal” correlation 

structure of the data considered (Ostyn et al., 2007).  

Although the techniques needed for exploratory data analysis for high dimensional data are 

in a sense standard, they require some background in multivariate statistics, and the actual 

implementation in routine software asks for substantially more time than was the case for low 

dimensional data. It is seen in practice that the data exploration step is often overlooked, and that 

multivariate data analysis often comes down to a situation where “the data are crunched without 

having a clear feeling of them”. Also the fact that the person that has set up the experiment and 

collected the data is not the same person that actually processes the data to draw conclusions is a 

dangerous one–a strong background in the data generation itself is of utmost importance. 

Concluding, the increasing complexity of modern data makes the data exploration step less 

straightforward–where this step was almost trivial in low dimensional data, nowadays more 

sophisticated techniques should be used in order to have a good grip on them. Techniques for 

multivariate data exploration should be part of any education for engineers and statistical 

practitioners in general so that the person who set up the experiment is also capable of treating the 

data.  

 

CALIBRATION AND VALIDATION FOR HIGH DIMENSIONAL DATA 

High dimensional data collected from novel sensor technologies often have the property 

that the correlation among the different variables is very high (r > 0.9). This is for instance the 

case in spectral data that are found in a wide range of businesses.  

Classical statistical methods tend to fail in most of such cases–the number of samples is 

often (much) lower than the number of variables considered. Instead, inverse methods such as 

Principal Component Regression (PCR) or Partial Least Squares (PLS) are mostly used for 

prediction purposes, whereas discriminant analysis or even machine learning techniques such as 

Support Vector Machines (SVM) and Neural Networks (NN) are widespread for classification. 

Those dedicated techniques that are fit to handle the high dimensional data are believed to gain 

more importance in the future, where the degree of automation will further increase. 

PCR combines Principal Component Analysis (PCA, see higher) as a data reduction 

technique with classical multiple linear regression to predict the response. Both steps are widely 

described in the literature (e.g., Jolliffe, 2002; Kutner et al., 2004), and are in some cases part of 

master courses given to engineering students. PLS, however, is only rarely taught in university 

courses for engineers or statisticians. This is in some sense surprising, since it is probably the most 

widely used multivariate technique for prediction. Related to this aspect, it is also observed that 

textbooks on multivariate data analysis only scarcely mention PLS. On the contrary the technique 

is often mentioned in textbooks that handle spectral data, a discipline growing with high pace and 

that is often referred to as chemometrics. 

The techniques used in chemometrics are often categorized as classical or inverse methods 

(see higher). The principal difference between these approaches is that in classical calibration the 

models are solved such that they are optimal in describing the measured responses (e.g., the 

spectral data) and can therefore be considered optimal descriptors, whereas in inverse methods the 

models are solved to be optimal in predicting the properties of interest (e.g., concentrations, 

optimal predictors). Inverse methods usually require less physical knowledge of the system, and at 

least in theory provide superior predictions from a mean squared error point of view. As a 

consequence, inverse approaches tend to be more frequently applied in multivariate calibration. 

The fact that inverse methods do not require an understanding of the physical problem also 

poses important risks. Consider once more the example of optical spectra. Figure 1 (left) presents 

the average transmission spectrum together with pointwise 95 % confidence limits. Let us now 

alter the dataset by random permutation of the covariates, i.e. data vector  is altered to 
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 with  being a random permutation of . Doing so, the natural ordering of the 

covariates along the corresponding wavelengths  and, hence, spectral information, is completely 

destroyed. The permuted average spectrum and 95 % confidence limits are given in Figure 1 

(right). However, using xi( ) instead of xi( ) yields exactly the same results if one would use an 

inverse prediction method such as PLS. One could conclude here that the inverse methods do not 

take advantage of the natural ordering of the covariates and are thus in a way sub-optimal. Not 

including the natural ordering of the covariates gives the model often too much flexibility, such 

that overfitting and/or lack of generality are potential threats (Saeys et al., 2008). 

 

 
 

Figure 1. Visualization of the mean reflectance values (+) and their 95% confidence limits (.) 

in order of increasing wavelength (left) and in random order (right) 

(both datasets yield exactly the same prediction accuracy when classical inverse methods are used) 
 

Although powerful and available in most multivariate statistical software tools, inverse 

methods should be applied keeping in mind that overfitting is an important risk. Good statistical 

practice dictates that three different phases should be distinguished when using these models: 
 

• The calibration phase where the parameters of the models are estimated; 

• The validation phase to select the most appropriate model; 

• The test phase to estimate the actual prediction error of the model 
 

Given the importance of spectral data in modern production processes, teaching 

statisticians and engineers the art of model building for high dimensional data–with the different 

aspects mentioned above–seems indispensable. We strongly believe that integration of physical 

knowledge of the measurement system or process into the algorithms used will yield solutions with 

better performance.  

 

MULTIVARIATE SPC FOR MONITORING PRODUCTION PROCESSES 

In the case of spectral data mentioned above, the engineer can not only use the data for 

prediction purposes but may also use these data as a “fingerprint” of the current production to 

detect anomalies so that measures can be taken to bring it back to normal regime. 

Monitoring of processes in order to detect anomalies is the subject of a field that is referred 

to as Statistical Process Control (SPC), although the term statistical process monitoring might be a 

better description since the actual control step (in an engineering sense) is not part of it. Key tools 

in SPC are control charts, first developed back in the 20’s by Shewhart who concluded that while 

every process displays variation, some processes display controlled variation that is natural to the 

process (common cause variation), while others display uncontrolled variation that is not present in 

the process causal system at all times (special cause variation). Basically, a control chart is a graph 

of a measured process parameter or quality characteristic against the measurement time point. In 
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control charts, limits are formulated for the considered process or quality parameter based on the 

natural process variability. Any problem which causes unexpected process variation gives rise to 

the control chart crossing its limits (Montgomery, 2009). 

A wide range of univariate control charts have been developed and they found their way 

into a broad class of industrial processes. The multivariate case, however, where a combination of 

variables is monitored simultaneously, is less developed and traditional approaches established a 

set of individual univariate control charts on each of the quality variables measured. Occasionally, 

also multivariate extensions of these charts based on Hotelling’s T  statistic are employed on a 

subset of the most highly correlated variables. 

It is surprising that for a long time multivariate control charts were not advocated by 

applied statistics and SPC groups. This is in sharp contrast to the current practice in the design of 

experiments (DOE) where statisticians have been quite successful in introducing the ideas of 

designed experiments in which many variables are changed simultaneously (McGregor, 1997). One 

can argue that the use of univariate SPC charts in multivariate situations is directly analogous to 

one factor at a time experimentation in DOE–the presence of variable interactions in DOE leads to 

the same difficulties in interpreting the results of one factor at a time experimentation as does the 

presence of correlation among variables in interpreting univariate SPC charts. This practice has to 

be avoided, and recent more research shows a rapid increase in publications that deal with SPC for 

high dimensional data. In analogy with the data visualization step, also here dimension reduction 

techniques such as PCA are the main workhorses. In a sense, also in the SPC context one is 

interested in finding those observations that show some special cause variation. Hotelling’s T  and 

Q statistics together with appropriate limits can thus be used to construct these multivariate control 

charts. New research focusing on multivariate control charts able to detect small process changes, 

or capable of tracking time varying processes–an issue too often overlooked in SPC–seem to be 

most relevant for answering the growing needs from practice.  

 

EFFICIENT ENGINEERING THROUGH DESIGN OF EXPERIMENTS 

The SPC concepts described above are an important tool for detecting special cause 

variation and for keeping the process under control. Despite its clear benefits, however, statistical 

process control (SPC) is sometimes called a method of “counting dead bodies” (Hanrahan & 

Baltus, 1992): it provides little information on how to design a product or process to achieve 

quality goals and to maximize productivity. Designed experiments including systematic 

experimentation to determine the best combination of process inputs would then be a complement 

to SPC schemes in order to obtain high quality, stable production processes. 

More than half a century ago, Box (1957) introduced the concept of EVOP–Evolutionary 

Operation as a way of systematic experimentation. The basic idea is to replace the static operation 

of a process by a continuous and systematic scheme of slight perturbations in the controllable 

variables (inputs to the process). The effect of these perturbations is evaluated and the process is 

shifted in the direction of improvement, a procedure that is sequentially repeated in order to keep 

the process at its (possibly time varying) optimum. Since only small perturbations are imposed, 

EVOP has as strength that it can be applied on the full scale process. 

Box clearly understood the practical problem–when scaling up from small experimental 

conditions to full scale industrial processes, there are inevitably influences that are uncontrollable 

and that make the full scale process behaving sub-optimal. Although powerful classical 

experimental design helped to establish an optimal combination of the process inputs in the small 

scale (experimental) process, they are often very expensive, time consuming and require special 

training. Moreover, in most cases they interrupt production which is not feasible when moving to a 

full scale process. EVOP can thus be regarded as a tool in which a continuous investigative routine 

becomes the basic mode of operation for the plant and replaces normal static operation. 

EVOP is based on some very basic principles and does not necessitate an advanced 

background in statistics. Back in the 50’s, Box proposed some very simple score and analysis 

sheets that can be used to perform the calculations in case of 1 or 2 process variables. The practical 

applicability and the benefit to process engineers are huge, but surprisingly EVOP did not become 

a mainstream routine after Box proposed it. Reason for this might be the fact that industrial 

processes are often influenced by more than two variables and such cases make the manual score 
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sheets less appealing. Also, at that time a fast and reliable measurement of process inputs and 

outputs was less straightforward further complicating the technique from a practical point of view. 

So many years later, there might be a revival of the original ideas proposed by Box. Not so 

much from a pure theoretical point of view, but from an applied statistics perspective. The same 

problems that Box described 50 years ago still exist–processes still need to be continuously 

checked and, whenever needed, updated, and upscaling is an important issue. However, the 

possibilities we have today with respect to the measurement of process variables and the analysis 

thereof using fast computers, have changed considerably. Modern processes are equipped with a 

vast amount of sensors measuring each and every process step with high accuracy and speed so that 

information rich data are available at virtually no cost. Data acquisition boards are able to merge 

such data and pre-process those in a format that dedicated software can be used to further analyze 

them. In order to do so, applied statisticians will have the challenge to fit existing design of 

experiments theory into the EVOP framework.  

Think for instance about the progress that has been made during the last decades 

concerning computer aided design of experiments. These designs are specifically developed for 

cases where classical designs fail–mostly due to constraints imposed on the input space or the large 

amount of variables in the study. They rely on proven statistical methods to choose experimental 

points that show the influence of multiple variables with a minimum number of experimental trials. 

As such, they save the engineer valuable time in modeling, calculations and analysis of the results. 

Although software for performing computer aided designs does require some training for proper 

use, the best of the new programs are suitable for use by engineers so that they can solve most of 

the problems without resort to the services of a statistical expert. They allow the engineer to work 

as an engineer rather than as a statistician. 

The higher mentioned constraints are typical for industrial production processes – they 

encompass a large number of settings (variables), some of those variables are hard-to-change, and 

several variable combinations are unfeasible or result in an unacceptable product(ion) quality so 

that they are to be avoided. However, the use of computer aided designs for improving full scale 

industrial processes is to our best knowledge hardly explored but deserves special attention. 
 

CONCLUSION 

Statisticians and engineers have a bright future ahead if they can turn the massive data 

generated using state-of-the-art sensor technologies into knowledge that enables the owner to 

further improve his processes. Since those data typically are labeled high dimensional, we strongly 

believe that multivariate data analysis in the broad sense of the word–including data exploration, 

model building, statistical process control as well as design of experiments–should be taught when 

forming the new generation of both engineers and statisticians. 
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