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We discuss observations from teaching a freshman course: Statistical Analysis of Sports and 

Games. In many respects, this is a standard first college statistics course. Analyzing sports data, 

however, generates student interest in statistical ideas. Moreover, quantitative analysis in sports 

has become a serious research field, and many professional teams now employ statisticians. It is 

important for students to realize that academic and non-academic opportunities exist beyond the 

course. There also remain issues that need to be addressed before sports statistics courses become 

commonplace. They should: (1) appeal to both male and female students, (2) have a broad focus 

and not be too baseball-centric, (3) be primarily about statistics, not sports, and (4) have access to 

more appropriate textbooks. At the core of any statistics course is a desire to answer questions in 

meaningful ways. We offer ideas on how this can best be accomplished in this context. 

 

INTRODUCTION 

Successful statistics courses are the result of an appropriate mixing of many ingredients, 

perhaps the most important of which is student interest. When students are engaged in class 

material, they are motivated, and motivated students ultimately take more away from courses, and 

tend to perform better than they otherwise would. There are many ways to generate student 

interest. One of which is by providing an environment to illustrate ideas that is of relevance to the 

students outside of their academic life. Even when attempting to avoid the context-less examples of 

the past, introductory statistics courses have too often resorted to contrived examples of little 

bearing to the students. Using a sports theme to introduce statistical concepts provides a setting 

which is of interest to a wide array of students, while maintaining pertinent substance. 

Every incoming student at Macalester College is enrolled in a “first-year seminar” (FYS) 

during the fall semester of their freshman year. These are regular, but often thematic, courses that 

are typically limited to 16 students (limits were raised to 17 students for 2009 only). This paper 

presents examples from the FYS entitled Statistical Analysis of Sports and Games (SASG), which 

was offered for the first time in Fall 2009. In many respects, SASG was taught as a standard first 

college course in statistics (i.e. content focused on descriptive and inferential methods, and 

extended through multiple regression). At the termination of the course, students were ready to 

proceed with any flavor of “second course” in statistics. It is crucial that the purpose of the course 

is made clear to the students: this is not a sports discussion class, nor a class exclusively on 

sabermetrics, but a statistics class with examples drawn from the sporting world to include as wide 

a variety of sports as possible, and have broad appeal. A necessary condition for a successful sports 

statistics course is that students need not be “super fans” to enjoy it. 

SASG had 17 students, including 6 females and 3 international students. This is slightly 

higher than the college wide proportion of international students, but represents a substantially 

lower percentage of female students. We feel that the percentage of females will increase once the 

course is better understood on campus as gender neutral. There was no calculus prerequisite. The 

textbook for SASG was Statistics, 11
th

 Edition, by McClave and Sincich (2009). The course 

included a data analysis project ideal for exploring individual sporting interests. Biweekly in-class 

labs allowed the students to reflect on their understanding of recent material. The course software 

was the R language (R Development Core Team, 2009). 

The remainder of this paper is organized as follows: In the next section, we provide four 

examples used in SASG. For each example, we indicate what statistical topic(s) it addresses and, 

whenever appropriate, we mention issues that arose in the class discussion. We then conclude with 

some limitations to the course as it was taught in Fall 2009, and offer some final remarks. 
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SOME EFFECTIVE EXAMPLES 

 

Example 1: Birthdays of National Hockey League (NHL) Players 

Data was gathered on every player who played in the National Hockey League’s (NHL’s) 

regular season through the 2008-09 season. Of primary interest was the birthday of each player, 

and this was obtained for 6,391 of the 6,407 eligible players. This in-class example was used after 

introducing discrete distributions, including the Binomial distribution. The students are shown the 

graph presented in Figure 1, a plot of the birth month frequencies, and asked to comment. 

 
Figure 1. Absolute frequency of the birth month of NHL players through the 2008-09 season 

 

Someone inevitably observes that there is a downward trend, or that January has many 

more observations than December. The students are asked to explain why this graph is surprising. 

In their own words, they explain that they had expected to see a uniform distribution. The class can 

discuss whether the graph needs to look perfectly uniform, or how “non-uniform” would it have to 

be before they began to suspect that this represented a real phenomenon. The professor can then 

introduce the goodness-of-fit test, although we allude to inference in a slightly different way, by 

performing a small simulation. At this point, the students have seen the rbinom function in R, 

which simulates the flip of a coin. Here, we simply have 6,391 coin flips. How do we know the 

chance of “heads”? For us, “heads” is “born in January”, and we do not, a priori, know the 

probability of this event. We believe, however, that it should be, approximately, 31/365. This is 

purely an assumption (our H0). Now, under this H0, we can replay history 1,000,000 times, say, by 

typing: JanDist = rbinom(1000000, size=6391, prob=31/365). This will produce a graph similar to 

the one in Figure 2, the sampling distribution for the number of January births. 

How compatible is the observation of 668 births in January with Figure 2? Or, how likely 

is it that we observe (at least) 668 births in January, if H0 is true? The answer is “very unlikely”,  as 

seen from Figure 2, or by determining how many of the 1,000,000 replications are at least 668 

(easily done in R with one command line). This corresponds precisely to the concept of a p-value. 

Some students may question the assumption of uniform births and this can lead to an 

excellent discussion (e.g., what data could we obtain to form a more reasonable H0?). Having 

rejected H0, however, leads to a more intriguing topic for debate: why has this happened? The 

phenomenon is known as the relative age effect (RAE) (Barnsley, Thompson & Barnsley, 1985). 

Page constraints prevent a deeper study of the RAE here, but it states that the oldest children in any 

age category enjoy more success. The RAE has been observed in other sports (e.g. Thompson, 

Barnsley & Stebelsky, 1991; Barnsley, Thompson & Legault, 1992), with respect to academic 

performance (Barnsley, 1988), and in the business world (Du, Gao & Levi, 2009). A popularized 

version of some RAE research is given by Gladwell (2008). 
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Figure 2. Sampling distribution, under H0, for the number of January births 

 

Example 2: Graduation Rates of Student Athletes 

This example was used on an assignment which covered Simpson’s Paradox. Students read 

the paper Research Note: Athletic Graduation Rates and Simpson’s Paradox (Matheson, 2007). 

This paper addresses the commonly held belief that student athletes underperform academically, 

particularly in “big money” sports (i.e., men’s basketball and football) at Division 1 schools. Upon 

further reflection, an in-class discussion of the paper would have been more suitable, as there are 

several excellent, but subtle, points that the students might miss. 

As a metric of academic success, Matheson chooses 6-year graduation rate. An overall 

comparison shows underperformance by athletes. So, is conventional wisdom correct? What are 

potential confounding factors? The author points out that the racial makeup of the athlete 

population is quite different from that of the general student population (e.g., 26.8% of the athlete 

population is African-American, compared to 9.3% of the general population). Once we account 

for ‘race’, nearly the entire gap in graduation rate disappears. It is thus not that athletes are 

graduating at lower rates, but that African-American students have lower graduation rates, and 

represent a larger than proportional share of the athlete population. The graduation rate issue 

amongst African-Americans is well known, and it deserves undivided attention. We should not 

confound one matter with another. 

Matheson presents an important example on a topic of societal concern, and helps refocus 

our attention by using the crucial method of covariate adjustment. It illustrates how easily anyone 

can be fooled by facts and figures presented in a certain manner. It makes the students realize that 

they need to question results, and think about other possible explanations. For example, the 

discussion might continue by considering factors which could bring the results of this paper into 

doubt. Do athletes merely graduate at similar levels as non-athletes (after controlling for race) 

because they tend to major in disciplines which have higher graduation rates? Do athletes get 

special treatment, or private tutoring, which allows them to succeed more frequently? Both are 

excellent questions which should be pondered, even if they may not have definitive answers. 

Other sentences in the paper warrant mention, but due to space constraints, we only 

consider one. Matheson illustrates a typical piece of evidence provided in favor of the notion that 

athletes underperform: “Only 4 of the 64 teams [in the 2005 NCAA men’s basketball tournament] 

had graduated all of their players over the past year”. The students are asked to criticize this 

sentence. It seems to indicate a low graduation rate because 4/64 = 6.25% seems low. But, this says 

that 6.25% of teams had a 100% graduation rate! Stated in this manner, it becomes unclear whether 
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6.25% is low or not. Some ambiguity must also be cleared up: we assume that “all of their players” 

means the 5 or so seniors on the roster. If so, how does the 6.25% compare to the proportion of 

“100% graduation rates” we would observe in randomly selected sets of 5 non-athlete students? 

This is an easy question to answer using the Binomial distribution, or through a simple simulation. 

It turns out that 6.25% is almost identical to the corresponding value in the general population. 

Example 1 and 2 draw on sport contexts, but are, at their core, about something of broader appeal. 

 

Example 3: Why We Don’t Go For It 

This example stems from the article Why We Don’t Go For It, by Shankar Vedantam, 

published in the Washington Post on June 18, 2007. The article details two typical decisions made 

in the National Basketball Association (NBA) which, Vedantam argues, are indefensible under the 

scrutiny of objective reasoning. One scenario relies on a logical argument to determine whether 

coaches should remove a player from the game because they have a few early fouls. We will not 

discuss this piece further in this paper, but it is a useful discussion to have with students, since it 

makes them think about a problem differently from the way they have been trained to think by 

sports commentators, coaches, and athletes. 

The other example can be summarized as follows: Suppose that in the final few seconds of 

a basketball game, Player A can take a 2-point shot to tie the game. He is relatively open, but he 

decides instead to pass the ball to an open teammate for a 3-point shot, to win the game. The 

teammate misses the shot, and the team loses the game. Player A is criticized for not taking the 

safer 2-point shot. Did Player A make the wrong decision? 

The solution involves a simple application of conditional probability. If Player A takes the 

shot then two events must occur for his team to win: he must make the shot and his team must 

outscore their opponents in overtime (OT). Thus, we might write P(win) = P(Player A makes 

shot)*P(team outscores opponents in OT) = 0.5*0.5 = 0.25. Here, of course, we are assuming what 

we feel are reasonable values. The students were asked to fill in these two probabilities. They 

suggested that P(Player A makes shot) be between 0.4 and 0.5. This depends on how open, and 

where on the court, he is. For P(team outscores opponents in OT), there will inevitably be talk of 

momentum gathered by Player A’s team if they tie the game. Who the home team is might matter, 

along with a host of other factors (e.g. who has fouled out), but if the two teams are tied, it seems 

reasonable to select 0.5. In class, a student commented “So, are we just making these numbers up?” 

This is interesting since, if the book had declared “the chance that Player A makes the 2-point shot 

is 0.46”, no student would ever question it. There are at least two points to be made in response to 

this remark: (1) we are not “making up” the numbers, so much as we are trying to use our 

knowledge to obtain reasonable estimates of these probabilities, and (2) anyone can choose values 

that they feel are appropriate and potentially arrive at a different conclusion. 

We complete the solution by considering the chance that the team wins if player A passes 

the ball. In that case, the chance of winning is simply the chance that his teammate makes the shot: 

P(win) = P(teammate makes shot) = 0.30, say (again, this depends on the player). For the values we 

have chosen, Player A did not make the wrong decision. Only at this point should the students 

receive Vedantam’s article, which was about Lebron James (Player A) who passed to his teammate 

Donyell Marshall for the 3-point shot to give the Cleveland Cavaliers the win against the Detroit 

Pistons in the 2007 Eastern Conference Finals. Marshall missed the shot, and James was unfairly 

criticized. The class discussion can move to the psychology of why James was criticized even 

though the evidence suggests that he made the right decision. The most important reason for the 

criticism seems to have been the outcome. Had Marshall made his shot, James would have been 

praised for a “gutsy” decision. Clearly, we should not judge a decision based on its outcome. 

Vedantam also argues that human psychology is such that we want to put off a potentially bad 

outcome (losing in regulation time) for as long as possible, even when that decision is irrational. 

One student suggested another reason for the criticism: In his words, James is “the money”. He was 

criticized because he is the star player. He should not be passing up opportunities for shots when 

the game is on the line. This is, of course, a ridiculous reason for criticism. A fan of the Cavaliers 

would want the team to do whatever gives them the best chance to win the game, be it in regulation 

time or OT, with James or Marshall taking the final shot. This example implores the students to 

answer a pertinent question in an objective, quantitative, fashion. 
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Example 4: Interpreting Regression Coefficients Using NBA Player Data 

Data was assembled on 331 NBA players for the 2008-09 season. Admittedly, this dataset 

requires some knowledge of basketball. Information on the players included conventional statistics 

(e.g. points per game (PPG), minutes per game (MPG)), and new metrics, like adjusted plus-minus 

(ADJPM). We discuss the shortfalls of using conventional statistics to evaluate players. They do 

not capture many of the things which happen that help a team win. For example, a player who 

“boxes out” helps his teammates obtain a rebound, but gets no numerical credit for his action. Or, a 

player who manages to place a hand in his opponent’s face during a shot lowers his opponent’s 

chance of scoring, but this does not appear in the box score. This helps the students understand the 

importance of using appropriate metrics in any analysis. 

Here, we only consider building models for PPG. First, consider univariate models for PPG 

which use offensive and defensive rebounds (OFFREB and DEFREB), respectively. Both show 

significant positive relationships. But, if we fit a multivariate model which uses both DEFREB and 

OFFREB, then both variables retain significance, except that OFFREB has a negative coefficient. 

Is this contradictory? No, it simply requires knowledge of how to interpret the coefficients from a 

multivariate model. The coefficient on OFFREB represents a partial change in PPG, holding 

DEFREB constant. Why is the coefficient on OFFREB positive in the univariate model? It is 

because OFFREB and DEFREB are quite highly correlated. Once DEFREB is accounted for, 

however, we see that players with higher OFFREB tend to score less. This is an example which 

illustrates a crucial point to the students: the context set by variables makes a huge difference to the 

meaning of coefficients in a model. 

Another question arises from a plot of PPG vs. MPG, shown in Figure 3. Is there any 

curvature noticeable in this relationship? Indeed, the answer is ‘yes’, and this can be confirmed by 

testing a quadratic model term. But is this curvature explainable? Although PPG is not the perfect 

measure of a player, it does tell us something about his value. Moreover, playing time is not 

delegated randomly; coaches decide who plays more than others. If the relationship between PPG 

and MPG were linear, this would indicate ineffective decisions regarding playing time. In other 

words, if the relationship were linear, then the only difference in PPG between a player who plays 

10 MPG, and one who plays 30 MPG, would be amount of playing time. This should not be, as the 

player who plays 30 MPG will tend to be the better scorer (this is why he is getting more minutes!). 

This example is valuable because it extends beyond the usual mechanical questions asked, and 

requires the students to think carefully about the system of variables being examined. 

 
 

Figure 3. Scatterplot of PPG vs. MPG for 331 NBA players from the 2008-09 season 
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CONCLUSION 

SASG was 60-65% lecture based. Ideally, that value would be reduced to roughly 50%. 

Two plans of action can be used to achieve this goal: (1) increase the number of in-class labs, from 

7 to 10, say, and (2) Organize 1-2 guest talks. The professor should contact quantitatively inclined 

individuals associated with sports teams, or other individuals, suitable for giving a lecture. For 

SASG, two such people were found, a coach on Macalester’s football team, and a graduate student 

who had worked for STATS (owners of the world’s largest collection of sports data). By the time 

these individuals were contacted, however, it was late in the semester, and organizing a talk did not 

seem viable. We realize that, in the first teaching of a class, a lot of material must be developed, 

and some compromises need to be made. With regards to the lecture/lab ratio, a certain amount of 

lecturing is necessary, but it has become increasingly clear that when students carry out procedures 

on their own, the concepts register with them much more quickly and effectively. 

Sports examples were selected from McClave and Sincich (2009), but it is not a sports 

themed book. There are many books on how statistics are used in sports (Albert & Koning, 2007; 

Winston, 2009; Albert, Bennett & Cochran, 2005), but there is a shortage of suitable textbooks for 

an introductory course. One exception is Teaching Statistics Using Baseball (Albert, 2003), which 

would be perfect for a baseball-focused course, like the one Albert has taught (Albert, 2002). Its 

focus, however, is too narrow for SASG. The development of appropriate introductory sports 

statistics textbooks will allow SASG-like courses to thrive at many colleges. 

As we have illustrated, sports statistics courses need not be restricted to baseball examples. 

Some baseball data was used successfully, but in order to maximize the appeal of the course, it 

should only represent one portion of the many topics that can be covered. Using sports data to 

motivate statistical thinking is an effective avenue for engaging students. The possibilities for such 

a course are numerous, and we have only scratched the surface in this paper. 

 

REFERENCES 

Albert, J. (2002). A Baseball Statistics Course. Journal of Statistics Education, 10(2). 

Albert, J. (2003). Teaching Statistics Using Baseball. Washington, DC: The Mathematical 

Association of America. 

Albert, J., Bennett, J., & Cochran, J. J. (Eds.) (2005). Anthology of Statistical in Sports. 

Philadelphia, PA: Society for Industrial and Applied Mathematics. 

Albert, J., & Koning, R. H. (Eds.) (2007). Statistical Thinking in Sports. Boca Raton, FL: Chapman 

& Hall. 

Barnsley, R. H. (1988). Birthdate and Performance: The Relative Age Effect. Paper presented at 

the Annual Meeting of the Canadian Society of Education, Windsor, Ontario, June 1988. 

Barnsley, R. H., Thompson, A. H., & Barnsley, P. E. (1985). Hockey success and birthdate: The 

relative age effect. Canadian Association for Health, Physical Education, and Recreation, 51, 

23-28. 

Barnsley, R. H., Thompson, A. H., & Legault, P. (1992). Family Planning: Football Style. The 

Relative Age Effect in Football. International Review for the Sociology of Sport, 27(1), 77-86. 

Du, Q., Gao, H., & Levi, M. D. (2009). Born Leaders: The Relative-Age Effect and Managerial 

Success. Online: http://ssrn.com/abstract=1365006. 

Gladwell, M. (2008). Outliers: The Story of Success. New York: Little, Brown and Company. 

Matheson, V. A. (2007). Research Note: Athletic Graduation Rates and Simpson’s Paradox. 

Economics of Education Review, 26(4), 516-520. 

McClave, J. T., & Sincich, T. (2009) Statistics (11
th

 edition). Upper Saddle River, NJ: Prentice 

Hall. 

R Development Core Team (2009). R: A language and environment for statistical computing. 

R Foundation for Statistical Computing, Vienna, Austria. Online: http://www.R-project.org. 

Thompson, A. H., Barnsley, R. H., & Stebelsky, G. (1991). “Born to Play Ball” The Relative Age 

Effect and Major League Baseball. Sociology of Sport Journal, 8, 146-151. 

Vedantam, S. (2007, June 18). Why We Don’t Go For It. The Washing Post. Online: 

www.washingtonpost.com/wp-dyn/content/article/2007/06/17/AR2007061700968.html. 

Winston, W. L. (2009). Mathletics. Princeton, NJ: Princeton University Press. 


