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Traditional approaches to assessing ‘understanding’ in mathematics and statistics education tend 

to focus on the two strands of procedural competence and conceptual knowledge. We take as our 

starting point the idea that this does not fully capture what it is to understand mathematical and 

statistical ideas, and suggest a third dimension of understanding which we call utility; that is, 

knowing why, when and how a particular idea can be used and the power which it offers. We 

suggest that this is a key feature of statistical literacy, without which knowledge of statistical ideas 

cannot be effectively applied. In this paper we draw on examples from our current and past 

research to explore how the assessment of understanding of utility may be approached. 

 

INTRODUCTION 

In this paper, we reflect on our previous studies of statistical thinking to argue that 

commonly proposed models of assessment may not adequately embrace an aspect of statistical 

activity that we see as fundamentally important. In considering the assessment of statistical 

thinking, we suggest that it is important to analyse what aspects need to be assessed. To give a 

flavour of work that has been done in this field we focus on two developments. 

Substantial work has been conducted which focuses on trying to build cognitive models for 

statistical thinking or reasoning. Work in Australia has built frameworks linked to the SOLO model 

(Biggs & Collis, 1991), a general model of intellectual development that categorises learning into 

five modes of functioning, each containing cycles of response, reflecting increasing sophistication. 

The Australian initiatives, for example, 

 

• validated frameworks that described young people’s statistical reasoning across a number 

of constructs (Jones, Langrall, Thornton & Mogill, 1997; Jones et al., 2000), and 

• proposed that students’ conceptions of probability increased by an average of one SOLO 

level over 4 years (Watson, Collis, & Moritz, 1997; Watson & Moritz, 1998, 2003). 

 

SOLO-inspired approaches to the task of identifying components of statistical reasoning 

inevitably produce a Piagetian-like hierarchy of developmental stages. Such frameworks have 

certain uses in the field of assessment. For example, the average progression of students’ 

conceptions of probability might be of interest to a policy-maker. This observation leads us to an 

even more fundamental question than asking what is to be assessed; we must also identify who is 

the assessor and what is their purpose for making the assessment. The SOLO-based approaches to 

assessment are, in our view, best suited to a macro-perspective of development, where the 

performance of populations, perhaps over extended periods of time, is in focus. 

In a separate initiative, Konold and Garfield have developed the Statistical Reasoning 

Assessment (SRA) tool (Garfield, 1998; Garfield, 2003), a multiple-choice test of 20 statistics and 

probability problems. Some items focus on calculation (for example, CC3 addresses the correct 

calculation of probabilities), some on understanding (CC4 assesses understanding of independence) 

and some on misconception (MC4 probes the common intuition that events of unequal chance tend 

to be viewed as equally likely). Such an approach is geared towards assessing individual 

performance, which coincides with our interest on activity within individual classrooms. We are 

interested in how teachers interact with particular students, attempting to identify the status of their 

understanding at a particular moment in time with a view to making an intervention in the moment. 

In examining the SRA, we notice, in common with Solo-based approaches, a tendency to 

equate knowledge with representations of statistics. We use the term representations very broadly 

to refer not only to graphs and numerical measures but also the conceptual components of statistics. 
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In this sense, CC3, CC4 and MC4 all assume that knowledge of statistics is knowledge of how to 

calculate or represent statistical objects or conceptual artefacts. 

An exception to this general observation about the SRA is item CC2, which refers to 

understanding of how to select an appropriate average. Here we begin to get a sense of statistics as 

an applied discipline, a human endeavour where knowledge of statistics is as much about having 

reasons for acting on or with data as it is about the logical reasoning basis for various techniques 

and representations. From a philosophical perspective, we tend to start with an inferential analysis 

of what it means to know (Brandom, 2002). From this perspective, we believe that CC2 hints at an 

aspect of understanding neither captured by macro-analyses in which the reasons for activity are 

regarded as noise amongst a general pattern of human development, nor emphasised in the SRA 

which is influenced by conventional representational ways of thinking about understanding. 

Our own research has not been concerned overtly with assessment. Rather we have focused 

on the interface between pedagogic design and learning and teaching at classroom level. In 

reflecting on the challenge of designing tasks that support the learning and teaching of statistical 

thinking we have attempted to foreground and characterise an overlooked dimension of 

understanding which is concerned with how ideas are used, drawing on a range of theoretical 

models. In particular our concern has been to develop a framework which supports an approach to 

the design of tasks which both creates opportunities for learners to recognize the power of what 

they know, and also supports teachers in their observation of, and intervention in, children’s 

activity. We are thus inevitably concerned with the ongoing formative assessment of individuals in 

which teachers engage on a daily basis, and which can so powerfully inform their interventions. 

 

A THIRD DIMENSION OF UNDERSTANDING 

It is generally accepted that constructing meaning for a mathematical or statistical idea 

involves many related elements which must be taken into account in assessing pupils’ 

understanding; a distinction is often made between elements relating to procedural competence, 

and those concerned with conceptual or relational understanding. Like many researchers and 

practitioners, we still find Skemp’s (1976) seminal ideas on instrumental and relational 

understanding powerful. However we argue that Skemp’s model does not provide a complete 

framework for thinking about what it means to understand and use mathematical or statistical 

ideas. We propose a third dimension of understanding, which relates to recognising the power of 

what you know. We call this dimension the utility of an idea, to encapsulate why that idea is useful, 

how it can be used and what it can be used for. We argue that a rich understanding of a 

mathematical idea involves procedural, conceptual and utility elements (Ainley, Pratt & Hansen, 

2006). 

In our research on task design over a number of years we have used the notion of utility 

alongside the related idea of purpose. In our framework, a purposeful task is one which has a 

meaningful outcome for the learner in terms of an actual or virtual product, the solution of an 

engaging problem, or an argument or justification for a point of view. This feature of purpose for 

the learner, within the classroom environment, is a key principle informing the design of pedagogic 

tasks which offer opportunities to engage with the utility of ideas. 

The purpose of a task, as perceived by the learner, may be quite distinct from any 

objectives identified by the teacher. The purpose creates the necessity for the learner to use 

mathematical or statistical thinking in order to make progress towards the satisfactory completion 

of the task. This progress provides feedback for the learner, rather than this being judged solely by 

the teacher. Because the mathematical or statistical ideas are being used in a purposeful way, pupils 

have the opportunity not just to understand concepts and procedures, but also to appreciate utility: 

how and why the mathematical or statistical idea is useful. This parallels closely the way in which 

ideas are learnt in out-of-school settings, where understanding the usefulness and power of what is 

being learnt is foregrounded. In contrast, within school ideas are frequently learnt in contexts 

where they are divorced from aspects of utility, which we believe often leads to significantly 

impoverished learning, tending to generate a sense of irrelevance and disconnection. A focus on 

instrumental and relational understanding inevitably starts with mathematics imagined as a 

collection of connected object-like representations. In contrast a focus on purpose and utility starts 

with mathematics imagined as human activity involving reasons for engagement. 
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OPPORTUNITIES FOR ASSESSING UNDERSTANDING OF UTILITY 

Because of the constraints of space in this paper, we will focus here on examples from a 

single task, which was designed as part of a study based on a pedagogic approach which we call 

Active Graphing. The guiding principle here is the design of purposeful tasks in which children are 

engaged in collecting data about an experimental situation and use graphing as an analytic tool to 

inform decision-making as they work towards a final product or solution. Active Graphing involves 

an iterative process of collecting data and entering this in a spreadsheet, generating a graph, and 

using the analysis of this to decide how the next stage of data collection should be focussed. Our 

aim is to create contexts in which children have the opportunities to experience the utility of graphs 

as tools for the interpretation of data rather than their more common function in classrooms as a 

communication tools for displaying results. 

The episodes described below occurred during a project in which classes of 8-9 year olds 

worked on a series of such tasks, using spreadsheets to record and explore data. The task we focus 

on here involves the design of paper spinners, known as helicopters by the children. Given a basic 

design (see figure 1), each group of children chose one feature (e.g., wing length) to vary in order 

to try to design a helicopter which would stay in the air for the longest time when dropped from a 

particular height (Ainley, Nardi & Pratt, 1998, 2000). 

The children experimented with their helicopters, timing how long each one flew, and 

recording results on their spreadsheet. After collecting three or four sets of data, they were 

encouraged to draw a scatter graph of, say, wing length against time of flight, and look carefully at 

this for patterns in the helicopters’ behaviour. On the basis of this discussion, they made decisions 

about how to proceed with their experiment. For example, if they had already tested helicopters 

with wing lengths 3cm, 6cm, 7cm, 8 cm, they might decide that they needed to try lengths between 

3cm and 6 cm. If they got a sense that helicopters with longer wings were better, they might try 

even longer versions next. 

 

Normalising 

Within a large number of observations in Helicopters and other Active Graphing tasks we 

have identified an activity in which children spontaneously engage; we have called this activity 

normalising (Ainley, Pratt & Nardi, 2001). This involves recognising abnormalities in graphs 

during ongoing experiments and attempting to adjust and ‘correct’ the data and the graphs towards 

some perceived norm. This facility to ‘correct’ graphs, despite having limited technical knowledge 

about the structure of the graphs, was a pervasive feature of activity across different tasks and, we 

believe, provides robust evidence of children’s developing understanding of the utility of graphing 

as an interpretive and analytic tool. 

We offer one example of normalising from the activity of a group of 8-9 year old boys to 

illustrate this. From their initial explorations, Andreas, Bill and Simon had produced the graph 

shown in Figure 2. After discussion of what appeared to be a linear pattern in their wing-length 

data, they used a facility in the software to drop a line over the graph to articulate this. As they 

added further data points, the researcher asked about the pattern. 

 

Res:  What can you say about the pattern? 

Bill:  The longer wings stay longer in the air. 

And:  Apart from that one (pointing to the cross representing a wing-length of 6.5 cm.) 
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Figure 1. A paper helicopter Figure 2. Andreas, Bill and Simon’s graph, with a 

line added to indicate a possible trend 

 

The boys discussed possible reasons for this apparent abnormality, and decided to re-test 

the helicopter with wing-length 6.5cm, feeling that there may have been some experimental error in 

their original attempt. Repeating the experiment did produce a result which matched more closely 

the boys’ expectation of the ‘proper’ appearance of the graph. 

We see normalising activity as evidence of children’s developing understanding of the 

utility of graphing data to support their analysis of patterns in experimental data, and of the nature 

of that data. Importantly, when children engage in normalising, this provides opportunities for the 

teacher to intervene in a focused way to challenge, extend and further assess their thinking and to 

introduce new procedural or conceptual ideas. In the instance described here there were 

opportunities to challenge the children to give explanations for the anomaly in the graph, to re-visit 

and extend measuring skills, and to check on the children’s understanding of decimal notation. 

 

Using average values 

The demands of measuring a range of quantities in all the experimental active graphing 

tasks meant that ‘messy data’ quickly emerged as a problem for the children. This created 

opportunities both to discuss ways of improving measuring skills, and to introduce the idea of 

repeating each experiment and then using an average of the results to create a ‘cleaner’ graph. 

Although the children had not yet been taught formally about calculating measures of average, they 

had some common sense notions of what ‘average’ meant, and they were shown how to use the 

Average function on the spreadsheet to obtain the mean of several results. Although they did not 

understand the procedures for finding the average, many children appeared to gain some 

understanding of its utility for producing better data and clearer graphs, and we saw some groups 

transfer this idea to work on new tasks, supported by using the spreadsheet’s functionality. 

We saw further, and perhaps more convincing, evidence of an understanding of this utility 

amongst one or two groups who apparently had not remembered the detail of how to use the 

spreadsheet function for the calculation, and devised their own approaches to producing an average 

measure. One group repeated each experiment in the helicopters task five times, and then used an 

invented method, which actually produced the median value, as follows. They looked at the five 

numbers, and crossed out the highest and the lowest. Then they looked at the remaining three, and 

did the same. (They also introduced a consistent rule for how to proceed if two values were equal). 

This left them with a single flight time for each wing-length, which they used to plot their graphs. 

Observing children’s explanations of their development and use of this procedure offered 

opportunities for assessment of their understanding of the utility of a measure of average in a way 

which would be overlooked in an assessment task based on a hierarchical model, since their 

procedural and possibly their conceptual understanding in this area would be at a much lower level. 
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CONCLUSION 

We have explained how our research on mathematical and statistical thinking at the micro-

level has led to an awareness of the need to integrate utility into our articulation of what it means to 

understand mathematical and statistical ideas. We have illustrated the notion of understanding 

utility through two examples drawn from our research on active graphing. The emphasis on utility 

has been a feature of much of our work in areas other than graphing. For example, our research on 

young children’s understanding of randomness led to the development of a software resource, 

ChanceMaker, which offered children the opportunity to construct utility for probability 

distribution (Pratt, 2000). In this study, students were challenged to mend gadgets, small virtual 

simulations of everyday random generators such as coins and dice. To mend the gadgets, the 

children needed to engage with a feature known as the workings box. This was an unconventional 

representation of distribution that contained the instruction to generate the random outcomes from 

the gadget. Utility for distribution emerged as the children began to realise that they could predict 

long-term behaviour of the gadget by inspection of the workings box without needing to generate 

and analyse results. The children’s use of the workings box to generate results had led to a sense of 

how the workings box represented potential outcomes and their likelihoods, which we see as a 

situated understanding at the root of the utility of distribution. 

We note in the ChanceMaker example how purposeful activity led to understanding the 

utility of the representation. Similarly, intent on finding the ‘best’ helicopter, the children became 

aware of the utility of scatter graphs and of averages; again meaningful human endeavour drove the 

construction of utility understanding. These cases provide a powerful illustration of the connection 

between an inferential philosophy that knowing is first and foremost associated with reasons for 

actions and that utility is a key aspect of understanding that can emerge from such activity. We 

approach task design through deep consideration of what tasks might lead to purposeful activity 

and look to optimise the approach so that utility of a key mathematical representation might ensue. 

In contrast, when teachers and researchers deploy conventional approaches to teaching 

mathematical or statistical ideas, emphasis is often first placed on introducing representations. It is 

not difficult to imagine teachers beginning a topic on graphs by describing the many conventions 

involved in drawing a graph, or on averages by setting out the mechanism by which mode, median 

and mean are computed, or distribution by offering a definition. Indeed, such approaches are 

typically consistent with examples in textbooks and curricula. Such an approach is typical of 

conventional teaching of statistics more generally, where either instrumental or relational 

understanding is encouraged from the outset by an emphasis on algorithmic calculations and 

definitions. 

The examples we have discussed demonstrate tasks which create opportunities for 

formative assessment of the understanding of utility. From our inferentialist position, we identify 

an important challenge to the teaching profession and mathematics/statistics education researchers 

to develop pedagogic approaches that emphasise understanding of utility by designing purposeful 

tasks. In fact, statistics educators can lead the way in this respect. Whereas mathematics educators 

often regard context as an obstacle that can obscure the pure mathematical ideas that lie at the heart 

of the problem (Cooper & Dunne, 2000; Boaler, 1993), statistics educators recognize that their 

world is indeed embedded in context. We conjecture therefore that it is easier for statistics than 

mathematics educators to embrace the inferentialist position and to recognize the power of 

understanding utility, though that is not to say that the issue is any less important for mathematics 

education. 

As we outlined at the beginning of this paper, much of the focus in statistics education 

assessment is currently on hierarchical models of understanding, which we argue are best deployed 

for summative or evaluative assessment. The tasks we have presented have been concerned with 

the formative assessment of ongoing activity, as takes place every day in classrooms, rather than in 

examinations or policy-making. It is here, at the micro level that we expect to find evidence of 

understanding utility and suggest that future efforts to develop formative assessments of utility 

might be targeted. 
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