
ICOTS8 (2010) Invited Paper  Lavallée 

In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the 
Eighth International Conference on Teaching Statistics (ICOTS8, July, 2010), Ljubljana, Slovenia. Voorburg, The 
Netherlands: International Statistical Institute. www.stat.auckland.ac.nz/~iase/publications.php [© 2010 ISI/IASE] 

UNDERSTANDING SAMPLE SURVEY THEORY WITH THE 

“REPLICATES-DUPLICATES” APPROACH  

 
Pierre Lavallée 

Statistics Canada, Canada 
Pierre.Lavallee@statcan.gc.ca 

 
In sampling, a sample is selected from a finite population in order to produce some estimates for 
this population. We want these estimations to be unbiased and the most precise. A good precision 
corresponds to the situation where different samples produce about the same estimation. In other 
words, we want the replicates (i.e., the results of the sample selection process) to be as duplicates. 
The use of auxiliary information (e.g. through a linear regression estimator) also helps in making 
replicates to be as duplicates, and the concept of superpopulations allows alleviating some 
emerging conceptual problems. Based on the “replicate-duplicate” approach, we can develop a 
complete philosophy of teaching sampling theory where, at the start, formulas are left behind to 
concentrate in the development of the intuitive aspect of sampling theory. 
 
INTRODUCTION 

Statistics is and must be of practical significance. Indeed, statistics is seldom practised for 
its own purposes; instead, it seeks either to summarize (or describe) a given population or to 
convey something about that population (inference). By a population, we mean a set of units 
(individuals, households, businesses, farms...) that we want to study (e.g., the individuals of a given 
city). We believe that the teaching of statistics must include concrete situations designed to anchor 
the theory so that it can be put to a practical use. 

From all the possible ways of dividing the realm of statistics, some people choose to set up 
an opposition between inferential (or classical) statistics and sample survey theory. In many 
faculties, these two branches of statistics are generally taught separately, without bringing them 
together in any way. This means that students, after much frustration, resign themselves to seeing a 
gulf between the two branches. 

What we are proposing here is a way to understand sample survey theory using the 
“replicates-duplicates” approach. We see this as an approach whereby—at least at the outset—
sample survey theory can be taught without having to use mathematical formulas. The formulas are 
introduced at a later stage, after a visualisation of the situation that helps to approach the survey. 
This serves to get to the formulas with fewer difficulties and better understanding of students. 
 
THE “REPLICATES-DUPLICATES” APPROACH 

The replicates-duplicates approach described in this paper is drawn from an undergraduate 
course on sample survey theory that the author took at Carleton University (Ottawa, Canada) in 
1985. The professor who taught the course was Dr. Dale, a retired Statistics Canada survey 
methodologist. Having worked on a number of Statistics Canada surveys, Dr. Dale had great 
hands-on experience and a pragmatic way of thinking. The author of this paper cannot say whether 
the replicates-duplicates approach used was developed by Dr. Dale himself, but he believes that the 
professor had an excellent way of using the approach to teach sample survey theory. 

By sample survey, we mean the selection of a portion (or part) of the population in order to 
produce estimates of that population. We generally assume that we have a finite population of size 
N consisting of variables of interest , , ,..., for , that are unknown constants. For 

example, we might want to measure the production (y), the revenue (x) and the expenses (z) of the 
N businesses of a given country. We seek to obtain a “representative” sample of that population. 

Most people have an idea, albeit a vague one, of what representativeness is. In formal 
terms, it can be defined in different ways, and there seems to be no consensus on this matter. 
Kruskal and Mosteller (1979) cite at least nine different definitions of a representative sample or a 
representative sample design. In general, we can say that if different samples are drawn and they 
are all “representative” of the population, the estimates produced from each sample should be 
similar. The estimates produced then have good precision. We therefore want each of the sample’s 
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replicates to produce identical estimates, i.e. duplicates. In other words, “we want the replicates to 
be duplicates”, a point that Dr. Dale drilled into his students. From this perspective, variability in 
estimates from different samples is seen as “the failure to obtain replicates that are duplicates.” 
 
Relationship between “duplicate replicates” and variability of estimates 

Let  be the set of all possible samples s drawn from the population, and let  be an 

estimate of the total  of a variable of interest y for that population. We define the 

expectation of  by , where  is the probability of selecting 

sample s. We have that  is nothing other than the weighted mean over all possible samples. The 

variance of  is given by , i.e., the weighted average of the squared 

difference from the expectation, over all possible samples. 

When replicates are duplicates, each sample s yields the same estimate , meaning that 

 for any s. If all samples s yield the same estimate , the expectation comes down to 

, and the variance gives us ! Thus, there 

is no variability between the different estimates that we would produce from different samples. We 

conclude that if the replicates are duplicates,  and we obtain maximum precision for the 

estimate of the total Y. Note that there might still be a bias in the estimates (i.e., ), but 

it will be considered as nil for the present paper. Therefore, assuming no bias, the more replicates 
are duplicates, the greater the precision of the estimates (variance approaching zero). 
 
Choosing a sample design 

The easiest way to draw a sample of size n from a population of size N is to select units 
“perfectly randomly”, that is, in such a way that all possible samples have the same probability of 
being selected. This is what is meant by simple random sampling (SRS), which is usually 
illustrated by selecting a number of marbles from a bag. SRS generally yields estimates with great 
variability. Fortunately, some techniques exists to reduce this variability, one being stratification, 
which consists in dividing the population into homogeneous sub-populations. 

To discuss variability among the different estimates obtained from different samples, it is 
important to choose a simple measure of this variability. Assume that we have two samples drawn 

independently from the same population. Let  be the estimate obtained from sample 1, and  be 

the estimate obtained from sample 2. A possible and simple measure of variability is . 

If the samples are big (i.e., the sample size n approaches the population size N), we should 

expect the estimates  and  to be close to the true total Y, which means small variability since 

 then tends toward zero. We then have replicates—  and —that tend to be duplicates. 

On the other hand, the smaller is the sample, the greater the risk of having a bad sample, in the 

sense that the estimates  and  obtained may prove to be very different from Y, which means 

greater variability. Note that if the population is very homogeneous, even small samples should 
produce estimates that are relatively close, and we should then have replicates that tend to be 
duplicates. Large samples are required when the population is very heterogeneous. 

If the replicates are not duplicates, there will be variability among the estimates. Therefore, 
we want to select the sample in order to reduce variability as much as possible. The way to select 
the sample is connected to the sample design (where SRS is the simplest one). Four main factors 
influence the choice of a sample design. The first factor is the desired precision of estimates, which 
is related to the risk of making a mistake and the concept of variability. The greater the need to 
produce precise estimates, the greater the need to assign special importance to the sample design, 
which notably includes the sample size. The second factor has to do with the available resources 
(money, time, human and physical resources), which are important insofar as they make it 



ICOTS8 (2010) Invited Paper  Lavallée 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

necessary, for example, to limit the size of the survey sample. The third factor is related to the 
characteristics of the population being surveyed. For example, in the case of a very heterogeneous 
population that would require a very large sample to get reliable estimates, considerable effort must 
be expended on developing a sample design that stays within collection budgets. Lastly, the fourth 
factor influencing the choice of a sample design is the data collection method chosen. For example, 
in a survey involving face-to-face interviews, collection costs are likely to influence the sample 
size. 

In determining a sample design, there are three steps: (i) visualize (assess the situation) and 
determine the different options; (ii) compare theoretically the different options selected—for 
example, by determining theoretically the parameters according to which a given sample design 
will yield the most precise estimates; (iii) use experimental results to choose the best sample 
design. For this purpose, we generally use results from previous surveys or simulations (Monte-
Carlo methods). 

Visualization (or assessment of the situation) is a major and essential part the survey 
methodologist’s work. This is the step where an idea begins to take shape on how to approach the 
survey, considering the four factors listed above. This step does not include, per say, mathematical 
aspects or formulas; instead, it consists of outlining the population to be surveyed and thinking of 
possible sample designs. This is the step where the survey methodologist assesses which of the 
retained sample designs will likely produce replicates that are duplicates. 

Several books provide a classical approach to the different sample designs currently used 
in practice. Among these are the books of Cochran (1977), Särndal, Swensson and Wretman (1992) 
and Lohr (1999), all in English, and those of Morin (1993), Tillé (2001) and Ardilly (2006) in 
French. The Statistics Canada publication “Survey Methods and Practices” examines the choice of 
a sample design based on visualization (Statistics Canada, 2003). 
 
A CLASSICAL EXAMPLE: BOOKS IN A PUBLIC LIBRARY 

Dr. Dale’s classical example dealt with a survey of books in a public library. In this 
example, we want to estimate the number of book borrowings during a year. There is therefore a 
population corresponding to the set of N books in the library. The measured variable of interest is 

, the number of times book k is borrowed during the year. Typically, a library has two-sided 

racks containing books. Each side of a rack forms a row, and each rack has shelves. Books are 
grouped by subject and are arranged conventionally on the shelves. 

These days, with computer technology, this example seems out of date, because to estimate 
the total number of borrowings during the year, all that needs to be done now is to consult the 
database on borrowings and the result is available in a few seconds. In 1985, not all libraries had 
been computerized, and each book contained a card on which the date of each borrowing was 
noted. To determine whether a given book had been borrowed during the year, it was necessary to 
open the book and look at its card. 

To illustrate the replicates-duplicates approach, it is natural to consider SRS. With this 
sample design, we randomly select a sample of books and look at the number of times each 
selected book was borrowed during the year. Since the library contains books on different subjects 
and these subjects vary in popularity, it seems likely that different samples of books will yield 
different estimates of the total number of borrowing during the year. For example, if by chance the 
sample contains only heavily borrowed books, there will be an overestimate of the annual number 
of borrowings, and vice versa. Therefore, here it seems likely that the replicates will not be 
duplicates. Consequently, there will be variability in the estimates, and to reduce this variability it 
will be necessary to have a large sample size, which will generate high costs. It is therefore 
important to consider ways to reduce this variability. One solution is to divide the population into 
more homogeneous sub-groups, or strata. 
 
INTRODUCING FORMULAS INTO THE TEACHING APPROACH 

After several weeks of discussing sample designs and assessing the situation 
(visualization), still applying the reasoning of the replicates-duplicates approach with the only help 
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of the very simple formula , we can begin to introduce more complicated mathematical 

formulas into the teaching of sample survey theory. 
Consider the example of SRS. We randomly draw (without replacement) a sample s of n 

books from the N books of the library. Let  be the probability that s contains book k. To 

estimate Y, the total number of borrowings from the library, we propose to use the estimator of 

Horvitz-Thompson (1952): . Generally, students tend 

naturally to accept the choice of this estimator. In teaching sample survey theory, we then show 

that the variance of this estimator is given by , 

where  and . To prove this, we can consult, among 

others, Särndal, Swensson and Wretman (1992). The quantity  is in fact a measure of the 
heterogeneity of the population. 

The more heterogeneous is the population, the larger is . Thus, for a large , we must 
also have a large sample size n in order to maintain a given level of precision in the estimates. 

Finally, the closer n gets to N, the more the variance  approaches zero. These are the same 

observations as those made with the replicates-duplicates approach, but they are now made using 
formulas. The formulas therefore take on a meaning, which makes it easier for the students to 
assimilate them. 
 
INCORPORATING AUXILIARY INFORMATION 

As before, we want to estimate the number of book borrowings over the course of the year. 
For simplicity, assume for now that an SRS is performed. 

We now assume that we have an auxiliary variable , which is the year of publication of 

book k, and we assume that this variable is available for all the N books in the library. Accordingly, 
we assume that we have a record of all books in the library and their year of publication. It seems 
plausible that the older a book, the less chance it has of being borrowed. According to this 
hypothesis, the variable of interest  (number of times book k is borrowed during the year) should 

be positively correlated with the variable  (year of publication of book k). 

 
Regression estimator 

Linear regression is well known and is much used in classical statistics. A regression 
estimator, based on linear regression, can be used to produce estimates in a sample survey context. 
On this subject, we can consult Cochran (1977) or Särndal, Swensson and Wretman (1992). 

To develop the regression estimator, we assume that the number of times book k is 
borrowed during the year is linearly related to the year of publication of book k. That is, we assume 

 for . Thus, we can write 

  (1) 
Through cross-multiplication, we obtain the regression estimator: 

 

Estimates of A and B may be obtained by using the least squares method, which is to minimize 

. We get  and . 

Replacing these estimates in (1), we then obtain the estimator . Note that if 

the relationship  holds perfectly, we have . Thus, the more the variable y is 

linearly related to x, the closer the estimate  produced from the drawn sample will be to the true 

total Y. Thus, in this case, the replicates will be almost duplicates. 
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The development of the regression estimator generally raises several legitimate questions 
from the students: How is this related to the classical theory of linear regression where 

 and ? Why not minimize  

instead of ? In other words, why not minimize the sum of the squares 

over the entire population, instead of restricting ourselves to the sum over the sample? If we need 
to minimize  instead of , why not assume that we have exactly ? In other words, 

why not assume that the total Y is exactly linearly related to the total X? How can one obtain the 
regression estimator when the design is more complex than SRS? If the selection probabilities  

are not the same for all units k, how can we consider this? To answer these questions so that the 
students will have a good understanding, we believe that it is necessary to avoid developing the 
regression estimator using relationship (1). A way to answer these questions is to use the concept of 
superpopulations. 
 
 Superpopulations 

The superpopulation is the stochastic process that generates the population. It is often 
considered as unknown or poorly understood. For example, borrowing books from the library can 
be seen as a random process. The book borrowing process is seen as a complex mechanism 
affected by factors, such as the choice of books purchased and the tastes of readers. This complex 
process constitutes the superpopulation. 

In sample survey theory, a sample s is drawn from a finite population consisting of 
unknown constants  in order to make an inference on this population. For example, we are 

interested in obtaining an estimate of the total number of borrowings of books from the library. The 
superpopulation, on the other hand, generally corresponds to an infinite and uncountable statistical 
distribution found in classical statistics. For example, it can be assumed that the superpopulation 
has the form of the linear model  where . The population is then seen 

as a realisation—that is, a sample—of size N from the superpopulation. Thus, in this case, we have 
a population of N units where each unit k has the form  where 

. Note that this type of sample corresponds to what is generally found in 

classical statistics. 
If we have no measure of y for all the N units of the population, we must then use the 

sample to make an inference on the population, which we can then use to make an inference on the 
superpopulation. The superpopulation concept helps us to understand this inference process, which 
consists of making an inference firstly from the sample to the population, and then from the 
population to the superpopulation. To learn more about this subject, see Särndal, Swensson and 
Wretman (1992). 
 
Using superpopulations in developing the regression estimator 

To develop the regression estimator, we assume the superpopulation model  

where . In our public library example, it corresponds to the “probabilistic process of 

borrowing books over the course of the year” where the auxiliary variable x is, once again, the year 
of publication of the book. From the superpopulation, we “draw” a population of N books where 

, . 

To construct the regression estimator, we now start with the identity 

  (2) 

where  is the predicted value of the  obtained using the adjusted superpopulation model. In 

our case, we have . Since we have the auxiliary variable x for the entire population, we 

can calculate  for all the N units of the population. However, we have  only for the n units of 

the sample. We must therefore settle for estimating the second term of (2), which can be done using 
the Horvitz-Thompson estimator. The resulting regression estimator is 
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  (3) 

To obtain the predicted values , we can estimate the parameters A and B using the least 

squares method. According to classical statistics, to estimate A and B, we must minimize the sum 

. Since we have only the sample s and not the entire population, we cannot 

calculate this minimization in practice. Instead, we minimize a Horvitz-Thompson estimate of that 

quantity, namely , which correspond to estimating A and B using the 

weighted least squares method (Fuller, 1975). The solution of this minimization problem gives us 

      and        (4) 

where , , ,  and . Using (3) 

and (4), we then obtain the regression estimator: 

 

The estimator  is a generalization of  described in Section 5.1. If the relationship 

 holds exactly, we have . Thus, the better the model, the closer the estimate 

 produced from the given sample s will be close to the true total Y. Therefore, the replicates — 

that is, the different estimates  obtained for different samples s — will be duplicates. 

As well, it can be shown that in the context of an SRS, we have 

 where . The more the predicted value 

 is close to  (which is the case when the relationship  holds exactly), the smaller 

is , and better is the precision. The variance  is based on the sum over all the possible 

samples. While it contributes to the determination of , the superpopulation model as such does 

not enter into the variance calculation. 
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