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Both likelihood inference and Bayesian inference arise from a surface defined on the inference 

universe which is the Cartesian product of the parameter space and the sample space. Likelihood 

inference uses the sampling surface which is a probability distribution in the sampling dimension 

only. Bayesian inference uses the joint probability distribution defined on the inference universe 

The likelihood function and the Bayesian posterior distribution come from cutting the respective 

surfaces with a (hyper)plane parallel to the parameter space and through the observed sample 

values. Unlike the likelihood function, the posterior distribution always will be a probability 

distribution. This is responsible for the different choices of estimators, and the different way the 

two approaches have of dealing with nuisance parameters. In this paper we present a graphical 

approach for teaching the difference between the two approaches. 

INTRODUCTION 

In this paper we graphically illustrate the differences and similarities between the 

maximum likelihood and Bayesian approaches to inference. We will see that under the two 

approaches (1) The estimators come from different surfaces, (2) Even when the surfaces are the 

same shape (flat priors) the estimators are chosen to satisfy different criteria, and (3) The two 

approaches have different ways of dealing with nuisance parameters. The observation(s) come 

from the sampling distribution  where  is the fixed parameter value. It gives the 

probability distribution over all possible observation values for the given value of the parameter. 

The parameter space,  is the set of all possible parameter values. It ordinarily has the same 

dimension as the total number of parameters, . The sample space , is the set of all possible 

values of the observation(s). Its dimension is the number of observations . When we are in the 

exponential family of distributions, the dimension of the sample space may be reduced to the 

number of sufficient statistics. We define the inference universe of the problem to be the Cartesian 

product of the parameter space and the sample space. See Bolstad (2010). It is the  

dimensional space where the first dimensions are the parameter space, and the remaining  

dimensions are the sample space. We do not ever observe the parameter, so the position in those 

coordinates are always unknown. However, we do observe the sample, so we know the last  

coordinates. 

 

SINGLE PARAMETER CASE  

We will let the dimensions be and for illustrative purposes. This is the case for 

a single parameter and a single observation (or observations from a one-dimensional exponential 

family). Figures 1, 2, and 3 are exact in this case. When we have  the same ideas hold, 

however we cannot project the surface defined on the inference universe down to a two 

dimensional graph. With multiple parameters, Figures 1, 2, and 3 can be considered to be 

schematic diagrams that represent the ideas rather than exact representations. 

 

Maximum Likelihood Estimation 

We are trying to choose an estimator to represent the unknown value of the parameter. The 

sampling distribution  is a function of both the value of the observation and the parameter 

value. Given the value , it gives the probability distribution of the observation . It is defined 

for all points in the inference universe. Thus it forms a surface defined on the inference universe. It 

is a probability distribution in the observation dimension for each particular value of the parameter. 

However it is not a probability distribution in the parameter dimension. The first panel of Figure 1 
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shows the sampling distribution surface in 3D perspective. The likelihood function has the same 

functional form as the sampling distribution, only is held at the observed value, and is allowed 

to vary over all possible values. It is found by cutting the sampling distribution surface with a 

vertical plane parallel to the  axis through the observed value, as shown in the second panel of 

Figure 1. Likelihood inference is based on the likelihood function. Since it is not a probability 

density, Fisher decided that the best estimator of the parameter is the value that has the highest 

value of the likelihood function. He named this the maximum likelihood estimator, (MLE). The 

MLE is invariant under any reparamaterization. 

 

  

 

Figure 1. The observation distribution (L) and the likelihood function (R) 

 

Bayesian Estimation 

Bayesian estimation requires that we have a probability distribution defined on the 

parameter space before we look at the data. It is called the prior distribution. It gives our belief 

weights for each of the possible parameter values before we see the data. This requires that we 

allow a different interpretation of probability on the parameter space than on the sample space. It is 

measures our belief, and thus is subjective. The probability on the sample space has the usual long-

run relative frequency interpretation. The prior distribution of the parameter is shown with the 

sampling distribution surface in the first panel of Figure 2. The joint distribution of the parameter 

and the observation is found by multiplying each value of the sampling distribution surface by the 

corresponding height of the prior distribution. This is shown in the second panel of Figure 2. To 

find the posterior distribution of the parameter given the observed value we cut the joint 

distribution of the parameter and the observation with a vertical plane parallel to the parameter axis 

through the observed value of . This is shown in the first panel of Figure 3. The posterior 

distribution summarizes the belief we can have about all possible parameter values, given the 

observed data. It will always be a probability distribution, conditional on the observed data. We 

can use the mean of this distribution as the estimate of the parameter. See Bolstad (2007). The 

mean of a distribution is the value that minimizes the mean-squared deviation. Hence, the Bayesian 

posterior estimator minimizes the mean-squared deviation of the posterior distribution. 

 

 

 

Figure 2. The prior and likelihood (L) and the joint density of and (R) 
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Figure 3. Posterior (L) and posterior when flat prior is used (R) 

 

Using flat prior the posterior has same shape as the likelihood 

If we decide to use a flat prior distribution that gives equal weight to all values of the 

parameters the joint distribution on the inference universe will be the same as the sampling 

distribution surface. This is shown in the second panel of Figure 3. Note that this prior distribution 

will be improper unless the parameter values have finite lower and upper bounds. When the prior is 

improper, we do not have a joint probability distribution. Nevertheless the normed likelihood 

function will be a probability distribution. In this case, the Bayesian posterior estimator would be 

the mean value (balance point) of the likelihood function. This is not generally the same value as 

the maximum likelihood estimator, unless the likelihood function is symmetric and unimodal such 

as in the normal likelihood. Figure 4 illustrates the difference between these estimators on a non-

symmetric likelihood function that could also be considered a Bayesian posterior distribution with 

a flat prior distribution. The maximum likelihood estimator is the mode of this curve, while the 

Bayesian estimator is its mean. The two estimators are based on different ideas, even when the 

likelihood function and the posterior distribution have the same shape. 

 

 
 

Figure 4. Maximum likelihood estimator and Bayesian estimator 

 

MULTIPLE PARAMETER CASE  

 We will use the two parameter case to show what happens when there are multiple 

parameters. The inference universe has at least four dimensions, so we cannot graph the surface on 

it. The likelihood function is still found by cutting through the surface with a hyperplane parallel to 

the parameter space passing through the observed values. The likelihood function will be defined 

on the two parameter dimensions, and we graph it 3D perspective in Figure 5. In this example, we 

have the likelihood function where  is the mean and  is the variance for a normal random 

sample 
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Figure 5. Joint likelihood 
 

Nuisance parameters 

Sometimes, only one of the parameters is of interest to us. We don’t want to estimate the 

other parameters and call them “nuisance” parameters. We just want to make sure the nuisance 

parameters don't interfere with our inference on the parameter of interest. Because using the 

Bayesian approach the joint posterior distribution is a probability distribution, and using the 

likelihood approach the joint likelihood function is not a probability distribution, the two 

approaches have different ways of dealing with the nuisance parameters, even when we use 

independent joint flat priors and the posterior distribution and likelihood function are the same 

shape. 
 

Likelihodd Inference in he prsence of nuisance parameters 

For instance, suppose that  is the parameter of interest, and  is a nuisance parameter. 

If there is a ancillary sufficient statistic, conditioning on it will give a likelihood that only depends 

on , the parameter of interest, and inference can be based on that conditional likelihood. This can 

only be true in certain exponential families, so is of limited general use when nuisance parameters 

are present. Instead, likelihood inference on is often based on the profile likelihood function 

given by: 

 

where  is the joint likelihood function. See Kotz et. al. (1986). Essentially, the 

nuisance parameter has been eliminated by plugging , the conditional maximum likelihood 

value of  given , into the joint likelihood. Hence 

. 

This is shown in the first panel of Figure 6. The profile likelihood function may lose some 

information about ,compared to the joint likelihood function. Note that the maximum profile 

likelihood value of  will be the same as its maximum likelihood value. However confidence 

intervals based on profile likelihood may not be the same as those based on the joint likelihood. 

 

Bayesian Inference in the presence of nuisance parameters 

Bayesian statistics has a single way of dealing with nuisance parameters. Inference about 

the parameter of interest , is based on the marginal posterior  which is found by 

integrating the nuisance parameter out of the joint posterior, a process referred to as 

marginalization. 

 

Note: we are using independent flat priors for both  and  , so the joint posterior is the same 

shape as the joint likelihood in this example. The joint posterior distribution with the marginal 



ICOTS8 (2010) Invited Paper  Bolstad 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

distribution is shown in the second panel of Figure 6. The marginal posterior has all the 

information about  that was in the joint posterior. In this example, the Bayesian posterior 

distribution of  found by marginalizing out of the joint posterior, and the profile likelihood 

function of  turn out to have the same shape. That is not always the case. For instance, suppose 

we wanted to do inference on  and regarded as the nuisance parameter. We have used 

independent flat priors for both parameters, so the joint posterior has the same shape as the joint 

likelihood. The profile likelihood and marginal posterior of are shown in 3D perspective in the 

first and second panels of Figure 7, respectively. Figure 8 compares the shapes of the profile 

likelihood function and the marginal posterior distribution in 2D for in this case. Clearly they 

have different shapes despite coming from the same two dimensional function. 

 

  
 

Figure 6. Profile likelihood (L) and marginal posterior (R) for  

 

  
 

Figure 7. Profile likelihood (L) and marginal posterior (R) for  

 

 
 

Figure 8. Profile likelihood and marginal posterior for  in 2D 
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CONCLUSION  

Both the likelihood and Bayesian approach arise from surfaces defined on the inference 

universe. Cutting through these surfaces with a hyperplane that goes through the observed data 

yields the likelihood function and the posterior distribution which are used for likelihood inference 

and Bayesian inference respectively. The likelihood function is not considered a probability 

distribution, while the posterior distribution always is. The main differences between these two 

approaches stem from this difference. Certain ideas arise naturally when dealing with a probability 

distribution. There is no reason to use the first moment of the likelihood function without the 

probability interpretation, so the maximum likelihood estimator is the value that gives the highest 

value on the likelihood function. When a flat prior is used, the posterior distribution has the same 

shape as the likelihood function. Under the Bayesian approach it has a probability interpretation, so 

the posterior mean which minimizes the mean squared deviation will be the estimator. When there 

are nuisance parameters, there is no reason why they could not be integrated out of the likelihood 

function, and the inference be based on the marginal likelihood. However, without the probability 

interpretation on the joint likelihood, there is no compelling reason to do so. Instead, likelihood 

inference is commonly based on the profile likelihood function, where the maximum conditional 

likelihood values of the nuisance parameters given the parameters of interest are plugged into the 

joint likelihood. Under the Bayesian approach the joint posterior distribution is clearly a 

probability distribution. Hence Bayesian inference about the parameter of interest will be based on 

the marginal posterior where the nuisance parameter has been integrated out. 
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