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In many areas of medical and social research, there has been an increasing use of repeated 

ordinal categorical response data in longitudinal studies. Many methods are available to analyze 

complete and incomplete longitudinal ordinal responses. In this paper a general transition model 

is presented for analyzing complete and incomplete longitudinal ordinal responses. How one may 

obtain Maximum Likelihood (ML) estimates for the transition probabilities by existing software is 

also illustrated. The approach is implemented on a real application. For this data set, two 

important results are underlined: (1) some transition probabilities may be estimated to be zero and 

(2) the model for current response, which conditions on previous response may reduce the effects 

of some covariates that had previously been strongly significant. 
 

INTRODUCTION 

Statistical activity starts with a scientific question which has to be answered by scientific 

methods. Our question of interest in this paper is how an ordinal response changes according to 

treatment or some time-varying explanatory variables. Answers to questions such as “Does the previous 

ordinal response affect the current ordinal response?” or “Does knowledge of a previous state reduce 

the effects of other explanatory variables?” are of interest. To answer such scientific questions we have 

to collect some data. This collection of data may be done by an observation study or a designed 

experiment. In each of these, the response of interest has to be observed for each subject 

repeatedly, at several times. That is why, in health-related and social science applications, we have 

to learn about longitudinal or panel studies where repeated ordinal response data commonly occur. 

For example, in such studies, a physician might evaluate patients at baseline and at weekly follow-

ups regarding whether a new drug treatment is successful. Another example is where the 

assessment of side effects of radiation therapy for cancer treatment is recorded on the ordinal scale of 

‘no problems’, ‘minor problems’, and ‘severe problems’ for patients who may be followed at regular 

intervals for some years. 
After collecting the data, the first and most important step in learning from the data about 

the process generating them is exploratory data analysis. This step may lead us to decide which 

statistical model is the most appropriate to use in order to answer the scientific questions of 

interest. Questions such as “Does the chosen approach allow us to answer our scientific question in 

an appropriate manner? or “Does the model fit well?” are also very important to investigate. After 

assessing goodness of fit of the model, what remains is the sensible interpretation of what the data 

and the model reveal.  

In longitudinal studies, there will be a sequence of responses recorded on each individual. 

In the current context, we have to take into account not only the fact that responses are ordinal in 

nature but also the possibility of dependence or correlation between responses given by the same 

individual. Different models can be used to handle such dependence. Agresti (1999) and Lall et al. 

(2002) conducted a comprehensive survey of models for ordered categorical data, in which the 

need for model interpretation is emphasized. One possibility is marginal modelling, which can be 

used to study the population-average pattern or trend over time (Ten Have et al., 1996; Kim, 1995; 

Liang et al., 1992). A second possibility is conditional random effects modeling which makes 

inferences about variability between subjects. In this approach, individual behaviour is often of 

scientific interest (Harvile & Mee, 1984; Verbeke & Lesaffre, 1996; Tutz and Hennevogl, 1996; 

Verbeke & Molenberghs, 1997; Tutz, 2005). However, both of these approaches are generally 

appropriate for longer sequences of measurements than those examined here. These approaches are 

not appropriate for the primary question of interest here which is how transitions from one level of 

response to another are made between consecutive time points. For such a scientific question, a 

more appropriate approach would be to use Markov (transition) models (see Garber, 1989; 

Francom et al., 1989; Rezaee & Ganjali, 2009, Rezaee et al., 2009) where we can consider the 

effect of previous response on current response. For reviews of transition and other models for 
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longitudinal ordinal data, see McCullagh (1980), Agresti (2002), Diggle et al. (2002) and Song 

(2007).  

In this paper, the use of a first order transition model for repeated ordinal responses is 

presented. It is shown how to use existing software to fit the model. The insomnia data are 

introduced and the initial exploratory data analysis is presented. This leads us to make two 

important points about transition probabilities. Then, the model and the likelihood are given and 

the results of applying the model to the insomnia data are discussed. Finally, conclusions are 

presented. 
 

INSOMNIA DATA  

The data in Table 1, extracted from Francom et al. (1989), show the results of a 

randomized, double-blind clinical trial comparing an active drug with a placebo in 239 patients 

who have insomnia problems. The measure of interest is the patient's response to the question 

‘How quickly did you fall asleep after going to bed?’ The response was categorized as: ‘less than 

20 minutes’; ‘20 to 30 minutes’; ‘more than 30 and less than or equal to 60 minutes’; and ‘greater 

than 60 minutes’. Patients were asked this question after a one week placebo washout period 

(baseline measurement) and following a two-week treatment period.  
 

Table 1. Time to falling asleep obtained from the question, ‘How quickly did you fall asleep?’ in 

grouped minutes (follow-up response, , by treatment and initial response, 

, observed counts and row percentages) 

 

  Follow-up ( )  

Treatment Initial ( ) <20 20-30 30-60 >60 Total 

Active <20 7  

58.3% 

4 

33.3% 

1 

8.3% 

0 

0.0% 

12 

100.0% 

 20-30 11 

55.0% 

5 

25.0% 

2 

10.0% 

2 

10.0% 

20 

100.0% 

 30-60 13 

32.5% 

23 

57.5% 

3 

7.5% 

1 

2.5% 

40 

100.0% 

 >60 9 

19.1% 

17 

36.2% 

13 

27.7% 

8 

17.0% 

47 

100.0% 

       

Placebo <20 7 

50.0% 

4 

28.6% 

2 

14.3% 

1 

7.1% 

14 

100.0% 

 20-30 14 

70.0% 

5 

25.0% 

1 

5.0% 

0 

0.0% 

20 

100.0% 

 30-60 6 

17.1% 

9 

25.7% 

18 

51.4% 

2 

5.7% 

35 

100.0% 

 >60 4 

7.8%  

11 

21.6% 

14 

27.5% 

22 

43.1% 

51 

100.0% 

 

For an exploratory analysis of these data, one has to think about how to answer questions 

like (1) What kind of association measure should we use to calculate the association between two 

ordinal responses? (2) Is there any correlation between the two responses? (3) If there is any 

correlation between the two responses, is the correlation the same in each of the two treatments? 

The answers to these questions are important since, if there is no correlation between 

responses, one may fit separate marginal models to each response to examine the treatment effect. 

For the insomnia data, the answer to question (1) is the gamma association measure (Goodman & 

Kruskal, 1954). This measure is the difference between the concordant and the discordant pairs 

divided by the sum of the concordant and the discordant pairs and it takes values in the range [-

1,1]. In answer to question (2), the estimate of gamma for the two responses is 0.546 (S.E. =0.063, 

P-value=0.000) which shows a strong association between the two responses and consequently any 

statistical analysis of these data should take this association into account. Partial gamma (gamma 

for a specific treatment) may be used to answer question (3). This is 0.461 (S.E. =0.105, P-

value=0.000) for the active drug and 0.635 (S.E. =0.075, P-value=0.000) for the placebo. As the 
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association between the two responses is not the same for the two treatments, we need to choose a 

longitudinal approach which is able to take into account the fact that the covariance structure of the 

responses is dependent on treatment.  

Table 2 displays empirical marginal distributions for the initial and follow-up responses for 

the two treatments.  
 

Table 2. Empirical marginal distributions of initial and follow-up responses for two treatments 
 

  Response category 

Response Treatment <20 20-30 30-60 >60 

Initial Active 0.101 0.168 0.336 0.395 

 Placebo 0.117 0.167 0.292 0.425 

Follow-up Active 0.336 0.412 0.160 0.092 

 Placebo 0.258 0.242 0.292 0.208 

 

From Table 2, we can conclude that, initially, the two groups had similar distributions, but 

at the follow-up, those patients on the active treatment tended to fall asleep more quickly. 

Let us give an example which highlights the difference between the two treatments. The 

sample probability of a patient who initially took more than 60 minutes to fall asleep but who, 

having taken the active drug, took less than or equal to 30 minutes to fall asleep by the follow-up is 

0.553 (see Table 1). The same probability is just 0.294 for a patient on the placebo. This shows the 

level of improvement on using the active drug for an insomnia patient initially required more than 

60 minutes falling asleep. An important question is whether this significant difference between the 

two treatments on follow-up response remains the same for all initial response levels. The model in 

the next section can answer this question using existing software. 

As we have seen the treatment effect may be reduced if we condition on the value of 

previous response. Another important point in analyzing the insomnia data using a transition model 

is that some of the transition probabilities may be estimated to be zero. Table 1 confirms this fact 

by showing the zero empirical transition probability of . When 

the treatment is the active drug, there is no observation with  given . 

 

ORDERED TRANSITION MODEL USING CUMULATIVE LOGITS 

The best approach to analyzing longitudinal data is to start with marginal modelling of 

responses where one assumes independence between responses. Results of this initial marginal 

model can be compared with a subsequent model which takes into account the correlation between 

responses.  

Perhaps the most popular method for the analysis of univariate ordered categorical data is 

that based upon the cumulative logit regression model which was first proposed by Snell (1964) 

and further generalized by McCullagh (1980) to allow link functions other than the logit. The 

model estimates the effects of explanatory variables on the log odds of selecting lower, rather than 

higher, response categories. This model for a univariate response can be expressed in terms of a 

latent variable model of the form:  
 

 

which gives 
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If we assume a logistic distribution for the error term ( ) this gives the logistic model of the form 

 

 

In the above equations,  (with observed value  and latent variable ) is the response 

of the i-th individual,  is the k-th explanatory variable for the i-th individual, J is the number of 

ordered categories of the dependent variable, ’s are the partition-specific intercepts (cut-points) 

indicating the logarithms of odds of selecting lower, rather than higher, categories when all 

explanatory variables are set to zero,  is the vector of cut-point parameters in 

which ,  is the vector of regression coefficients for the 

explanatory variables and K is the number of explanatory variables. In equation (1), as the linear 

predictor, , is subtracted from, rather than added to, the intercepts, a positive coefficient 

indicates increased likelihood of selecting a higher response category. The cumulative logit model 

assumes that the effects of different explanatory variables are fixed across all (J-1) partitions of the 

ordinal response. This model can be implemented readily in software such as SPSS (ordinal 

regression) and STATA (ordered logit regression). 

In transition models, the probability distribution of the outcome of individual i at time ,  

is a function of the individual’s covariates at time , , and the individual's outcome 

history , t>1. Such models are appropriate when there is a natural sequencing of the 

responses, as in longitudinal studies. Examples of this approach include Bonney (1987), the binary 

Markov model of Muenz and Rubenstein (1985) and Kalbfleisch and Lawless (1985).  

The form of the transition model for response variables with missing responses (which 

will be applied to the insomnia data where ) is: 

 

                                                                                                                                      (2) 

 

where and  for  are the responses given by the i-th individual at the initial time 

and at (T-1) follow-up times, respectively. The vectors  

and  are defined as before, is the vector of cut-point 

parameters for , and  is the vector of regression 

coefficients for the explanatory variables for and . This model forms a 

general model which includes interactions of the previous response with all covariates and hence 

the response correlation structure is dependent on the covariates. Using the transition model, the 

likelihood for two time points with complete data on the initial responses and possible randomly 

missing responses at time 2 is: 
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where ,  is the number of individuals without any missing data and n 

is the total number of individuals. For the insomnia data, there are no missing values and 

hence .  

The vectors of parameters, in system of equations (2), are assumed to be distinct at 

different times and hence parameter estimation can be carried out using existing software, such as 

SPSS, as follows: 

 

(1) modeling the probability of  by going to analyze of SPSS and then using ordinal regression, 

(2) separately modeling the conditional probability of  given  at each level of  by going to 

data, and selecting the part of data with the chosen level of  and then using analyze and ordinal 

regression, 

(3) continuing in the same way until separately modeling the conditional probability of  given 

at each level of . 

 

RESULTS OF APPLYING TRANSITION MODEL TO INSOMNIA DATA 

Results from the marginal model for the initial response (not reported here) show that there 

is no significant effect of treatment on the cumulative probability of initial response. Results of the 

conditional components of the transition model are given in Table 3. 

 

Table 3. Results for the transition model where  is the follow-up response 

(parameters significant at the 5% level are highlighted in bold) 

 
 

    

Parameter Est. S.E.  Est. S.E. Est. S.E. Est. S.E. 

 -.089 0.522 0.909 0.490  -2.235 0.436 -.561 0.385 

 1.478 0.621 2.377 0.623  -0.083  0.330 -.926 0.288 

 3.007 1.058 3.397 0.833  2.592 0.610 0.317 0.272 

Treatment 

baseline: 

placebo 

        

Active -.507 0.765 0.792 0.651  -1.705 0.477 -.161 0.381 

   

Now, we have gained more insight into the process generating the data. In Table 4, for 

different values of the initial response, the parameters for j=1,2,3 are intercepts indicating the 

log-odds of lower, rather than higher, times to falling asleep when patients use the placebo. For 

example, when the initial time to falling asleep is less than 20 minutes, for follow-up response log-

odds of less than 20 rather than time more than 20 is -0.089+0.507 =0.418, or the odds are 1.519 

when patients use the active drug. These log-odds, when the initial response is more than 60 

minutes, is -0.561+0.161=-0.400, or the odds are 0.670. 

When the initial response is ‘less than 20’ or ‘20-30’ there is no significant effect of the 

active drug. But, for an initial value of ‘30-60’ or ‘more than 60’ there is a positive effect of the 

active drug. This means that the drug is less likely to be effective for patients who previously took 

less than 30 minutes to fall asleep and so knowledge of the initial response may inform 

practitioners when considering prescribing this particular treatment. 

 

CONCLUSIONS 

In this paper, exploratory analyses of the insomnia data have revealed that: (a) some 

transition probabilities were zero and (b) conditioning on previous response has reduced the effect 

of treatment on current response. After initial exploratory data analysis, we used a Markov 

(transition) model for longitudinal ordinal response data. Existing software was used to estimate 



ICOTS8 (2010) Invited Paper  Ganjali 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

model parameters for an insomnia patient's ordinal response to the question ‘How quickly did you 

fall asleep?’. For these data, we found that the effectiveness of the active drug at follow-up depends 

on the initial response. The longer the time it took to fall asleep, the more likely the effect of the 

active drug was to be significant. One important step we have not discussed here is assessing the 

goodness of fit of the chosen model. Nagelkerke’s pseudo may be used to investigate the 

goodness of fit of an ordinal model (for details see Rezaee & Ganjali, 2009). 
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