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At least partially, statistical thinking is based on logic different from classical logic, which causes 

many troubles for students. To implement didactical considerations on this issue into teaching 

seems to be advantageous. Some examples will be outlined to illustrate the differences in logic and 

how this could be transformed to actual teaching. For our school experiments we implement 

analogies throughout and also examples from physics teaching. 
 

FAVOURABLE RELATION AND LOGICAL IMPLICATION 
 

The favourable concept 

In order to argue how a different logic is used in stochastical thinking contrasted to 
classical logic we briefly analyze a special relation between events, named “favourable relation”, 
which was introduced by Chung (1942). The idea to use this relation in order to understand some 
probabilistic and statistical paradoxes goes back to Falk and Bar-Hillel (1983). 
 

Case Sign Description 

  A favours B or A influences B positively 

  events A and B are stochastically independent 

  A does not favour B or A influences B negatively  

 

This relation can be considered as a weakened form of implication, see Vancsó (2009): 
• Probabilistically taken, A implies B logically means if you presume (or imagine) that A has 

(fictionally) happened, then the probability that B will happen is 1 (true).  
• Connected to this is the so-called favourable relation: A favours B does not mean that B is 

true if A (fictionally) happens; but B will become more probable if A has occurred 
compared to the case when A has not occurred.  
 

Some features differing the favourable relation from logic implication 

The logical implication follows some routine rules; for example: 
 

• Asymmetry:  then ; as not all statements are equivalent, implication 

is not symmetric. For two non-equivalent events, it holds , i. e., the 

logical implication is asymmetric. 
• Transitivity:  and  then is also true, hence the implication is transitive.  

 

Such relations are deeply imprinted in our mind from early childhood and in primary and 
secondary school. It is very surprising that neither of these rules is valid for the favourable relation: 

 

• It holds  then  the symmetry is true for all three versions of influence; i. e., the 
favourable relation is symmetric.  

• For the transitivity, there is no general rule; sometimes it is true that  and  

implies  but sometimes this does not hold.  
 

Advantages of the favourable relation are: (i) Students become familiar with conditional 
probabilities and their counterintuitive features; (ii) it allows an intuitive check of calculations. A 
lot of paradoxes may be clarified by using special properties of this relation, which differentiate it 
from classical implication, see Vancsó (2009). Other rules of implication were compared to the 
favourable relation in Borovcnik (1992).  
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Ex. 1: If  and then . 

Such a rule does not hold for the favourable relation; three 
different cases are represented in Figure 1, in case a) 

 has 4 points, in b) 3, in c) 2 points.      Figure 1. 

 
 

in all cases  case a) b) c) always it holds 

     

     

     

  and  but  but   
Ex. 2: (The lack of transitivity) can be constructed by pupils: If A = {2, 4, 6} denotes the 

event of even numbers, B = {2, 3, 5} the primes, and C = {4} the numbers divisible by 4, then  

 as  and  as   

but  as , which is opposite as “expected” by transitivity.  
 

Explaining paradoxes by the favourable relation 

Nemetz (1984) worked out many probability games but did not recognize the potential of 
the favourable relation to explain phenomena with conditional probabilities. For further examples 
illustrating the peculiarities of this relation, see Borovcnik (1992). Finally, we use it to enhance 
Simpson’s paradox. 

Ex. 3: Compare mortality rates in Mexico and Sweden. In total, Sweden’s mortality rate is 
5.5‰ higher than Mexico’s. In each of the age groups, however, mortality in Sweden is smaller. 

 B0 B1 A0 A1 V0 V1 k =V1 –V0 

Population in millions Number of deaths  Mortality rates ‰ 
Age 

Mexico Sweden Mexico Sweden Mexico Sweden 
Difference ‰ 

   – 14 33.68 1.53 110,471 904 3.3 0.6 – 2.7 

15 – 59 53.01 5.17 140,238 9,674 2.7 1.9 – 0.8 

60 – 69 4.74 1.12 61,826 13,751 13.1 12.3 – 0.8 

70 – 1.40 0.95 133,913 66,001 95.7 69.5 – 26.2 

Total 93.01 8.77 446,448 90,330 4.8 10.3 + 5.5 

One explanation of this phenomenon was proposed by J. K r sy (1873), which is named as 
standardization in demography.  

   

 

According to this method, we have to proceed as follows: If the mortality rates of Mexico 
are weighted by the age distribution of the population of Sweden, we get: 

 

 

If the population combinations were the same in the two countries and only the mortality rates were 
different then this rate in Sweden would be lower with 3.9‰. Reasons for the difference are: 
 

• difference of mortality rates within age-groups   
(difference of ratio of parts) 

• different population combination   
(combination of B is different) 

The other type of standardization fixes mortality of “0”:  

  
 

Figure 2. 

If mortality rates were the same in the two countries and only the distribution of age were different, 

1

1 1

2
2

1 

1

A 

C B 

a) 4 
b) 3 
) 2



ICOTS8 (2010) Invited Paper Refereed  Vancsó 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

mortality in Sweden would be higher by 9.4‰. The connection between the two components is:  
 

The situation can be described by the favourable relation as V. Bakos proposed: In the 

course of standardization, the entities to be compared are denoted by B and , they are grouped by 
the assumptions Ci (  denotes the whole population). The frequencies of all categories 

correspond to probabilities of events, for the details, see the table. 
 

Subsets “events” Frequencies Probabilities 

Populations 0 and 1 
 event;  

complement  

  

 

 

 

 parts of the 

populations (groups) 
as partition of ( ); are “assumptions” 

 in 0 and 1 
. 

 

 

 

 

 

 

 

 

 

 
in  

 

 
;  ;   

Characteristic 
investigated 
(mortality)  

in 0, 1 ;  ;  ;  

 

Lemma: i)  means that the conditional probability of  supposed is higher compared to 

the unconditional, i. e., . This may be characterized by  (“If  

favours  then  negatively influences ”). 

ii) Denoting , it holds: , i. e., 

“combined conditioning events may be conceived as hierarchical conditioning”. 

Def.:  favours  conditional to , written as , is defined as . 

With these notations, the paradox may be described as follows: 
• In each age group , the mortality satisfies  (“mortality in country 1 = 

Sweden) is smaller than in country 0 (Mexico). In probabilities, this means: 

, or , i. e. (see Lemma), . 

• In the whole population, , mortality in 1 is higher than in 0. Read as 

probabilities, this means , i. e., . 

Can it be that for all cases , which form a partition of the universe , that it holds , 

... ,  and yet  for the universe? This seems to be impossible. The paradox comes 

from a domination of our thinking by logic where the following is true: 
If  form a partition of the universe  then it holds 

{ , , … , then } 

This “rule” is used by the principle of proof by case discrimination. If one can prove  in 
each of the cases  and the cases cover all possibilities, then the proof is complete. Such a rule, 

however, can not be transferred to probabilities and the favourable relation as we have seen by 
Simpson’s paradox above. As Borovcnik (1992, pp. 211) formulated: in the case of the favourable 
relation a boundary condition can not be lifted into assumptions opposed to implication. 
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CONNECTING TEACHING OF STATISTICS AND PROBABILITY TO MODERN PHYSICS 
 

Incentives from modern physics teaching 

There was a didactical stream in physics (in parallel to the New Math) to embed modern 
ideas of science in physics at school. Kuhn (1962), in his paradigm theory, elaborated on the 
psychological and cognitive obstacles that humans encounter when they should undergo 
revolutionary changes. That makes it even more important to confront our young students early 
enough with the new concepts in physics otherwise they might ”refute” to change their concepts 
already acquired later. This thesis lead to a didactical stream in Hungary; Prof. G. Marx and his 
group tried to change teaching physics in the late primary and secondary schools accordingly (see 
Tóth and Marx 1980-82). Ideas from Károlyházi (1981) remind us to similarities between teaching 
physics and statistics: “The reason lies in the special nature of the difficulty with quantum 
mechanics. The essence of this difficulty is not the complexity of things; it is rather that we hear 

about something simply senseless (italics by the author).” Later he writes more explicitly “the 
trouble is not that the electron is different from whatever we have seen earlier but this existence 

appears a logical impossibility.” We remember that the cognitive situation is quite comparable to 
e.g., Simpson’s paradox. The situation involved seems to be impossible. The question is why? 
Reading Károlyházi further: “Our tactics, on the contrary, is to emphasize the outlined nature of 
difficulty.” This is also our starting point. “The very first question is: How can empirical facts 
appear not only awkward but logically impossible? Answer: Some time, way back in our past, 
perhaps while being sucklings, we have created a false picture about a phenomenon so basic that 
we are unable to remember now the process of getting acquainted with this phenomenon and we 
feel the false picture so natural that we subconsciously smuggle it into our thought-line. This lays 
the foundation for the contradiction.”  

We will not pursue this article further because it deals with quantum mechanics and our 
topic is statistics. But the essence of these thoughts can help us to plan a strategy in teaching 
statistics using similarities between these two fields. In our case, the earlier experience is the 
classical implication, which has special rules imprinted in students’ minds by continuous learning. 
In a new case where these rules fail, it causes troubles to us. We have to confront our students with 
probabilistic thinking as early as possible before the classical logic has fixed their mind. 

Another physicist, Weisskopf (1981) focused on the importance of conceptual learning: 
“The whole conceptual framework of quantum mechanics upon which modern physical under-
standing of the properties of matter is based. The difficulties encountered here are not necessarily 
mathematical: they are conceptual.” We agree that conceptual teaching and learning is very 
important. In the 1970’s, G. Marx a physics professor of Eötvös University tried to focus on it. His 
main idea was to teach physics by modelling; students should get experience with the models used. 
The corn concept is to confront students with modern physics earlier than usual. See Marx and 
Tóth (1991) for an overview about this topic. 

To sum up: reading an interesting teaching idea in physics we may get encouraged to 
introduce statistics and probability in schools as early as possible. We have to prepare careful 
teaching materials from the very beginning in order to offer encounters with “strange or unusual 
appearances”. One of the crucial concepts is conditional probability because it lies behind many 
problems and paradoxes. It should be shown that many situations in everyday life may be handled 
by them. Simpson’s paradox seems to be contradictory in classical logic but “normal” in statistics. 

 

A teaching experiment involving Bell inequalities 

Another topic where classical logic on the one hand and probabilistic thinking on the other 
may get in conflict is Bell inequalities, which embody that there is no classical cause and effect law 
in quantum physics. We can imagine only two types of causal connections between two events A 
and B: Either one of them follows from the other, or both have a third event as common root, 
which causes both of them. There is a quantum phenomenon which shows that there should be 
another, third type - causal connection, between A and B. The situation was modelled by an 
experiment (see Hraskó, 1984), which focused on Bell inequalities; the mathematical level is so 
elementary that it can be handled in schools as the author tried out in a secondary school.  

Ex. 4: Three persons are taking part in an imaginary experiment. All of them are in 
different rooms, C in the middle room, A in the left, B in the right room. See Figure 3. On the desk 
of C there are a plenty of identical closed big envelopes. All contain two identical middle size 
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envelopes. At the end, all middle size envelopes contain three little envelopes, which are numbered 
from 1 to 3 (see Figure 4). Opening an arbitrary little envelope, this contains a red or a blue disc. 
The colour distribution of these discs is the subject of our analysis. There are rules for opening 
envelopes. In the middle room, C chooses a big envelope, opens it and of the two middle size 
envelopes he sends one to A and the other to B. Both of them open the envelope and choose one 
little envelope and open it; the other two little envelopes are destroyed. A and B note the number of 
the chosen little envelope and the colour of the disc. Then C chooses another big envelope and the 
process will be repeated. After examining a lot of envelopes, the partners finish the experiment and 
compare the lists of A and B. 

 
 

Figure 3. Figure 4. 

 
  

List of A List of B 

1B 2R 

3R 1B 
2B 2R 
2R 3R 
1R 1B 
2B 1B 

The first rows can be read in the table next to Figure 4. If the number is the same in one 
row, the colour is always different (occurs in third and fifth row). The distribution of the colour in 
the little envelopes is not totally due to chance: In the same big envelope the little envelopes with 
the same number always contain discs with different colour. Consequently, if we see the two lists, 
we see a connection between them. Which type of correlation could be between the two lists? It 
seems to be common reason type correlation because information was not flowing 
directly between A and B. Easier to say the unknown creator of the big envelopes took 
discs with different colour in the little envelopes with the same number very precisely. 

But is it possible to read from the data of the table, which contains only the 
colour of discs after opening the envelopes, that they have the colour determined before 

opening? It is very surprising but the answer is yes. In the table, 36 different row types 
occur (2 colours and 3 numbers give 2·3=6, for two columns 62). From these, there are 
12 cases where the numbers are the same but from these only 6 occur; this reduces to 15 
cases. Let denote by N(iR, jB) the number of the rows which contain iR in one and jB in 
the other column. If the table contains many rows, the probability can be estimated from 
the empirical relative frequencies. In such a way, we estimate 

 (N denotes the number of all rows).  

The 15 probabilities are estimated from the results; to these the 6 known probabilities 
are added:   

These equalities express the very 
closed correlation between the two events 
column. If we add the assumption that all discs 
have a colour from the beginning, then there 
must be some inequalities among the 15+6 = 
21 empirical probabilities, which are named 
Bell inequalities after their discoverer. Since the information is kept carrying by the colour of discs, 
we have to convince ourselves that the discs have a colour in the envelope before it is opened. If 
the colour of the disc were determined by e. g., the meeting with air then the information of the 
colour would not be carried by the envelope. Examine the situation whether we could be convinced 
about the determined colour before the letter is opened. Because of the rules of the game, there are 
only four types of big envelopes with probabilities wi,. Bell inequalities are based on the positivity 
of wi using the probabilities p. One typical is: (*)  

Such an inequality is proven by expressing the p-probabilities by wi. p(1R, 2R) can be 
expressed by wi: 1R, 2R is only types c or d, the probability is wc + wd and the probability that A 

opens the first and B opens the second little envelope is . From that we have:  

(1)  

All the 15 different probabilities of p(iR, jB) (with the restrictions, see the table of cases) can be 
written by four different wi probabilities. From these, there are only three independent using 

. Hence, many constraints have to be fulfilled among the p-probabilities. The 

15 

cases 
 

(1R, 1B) 

(1R, 2B) 
(1R, 2R) 
(1R, 3B) 
(1R, 3R) 

(1B, 2B) 
(1B, 3B) 
(2B, 3B) 
(2R, 1B) 
(2R, 3B) 

(2R, 2B) 
(2R, 3R) 
(3R, 1B) 
(3R, 2B) 
(3R, 3B) 

 

Type of the 
big envelope 

Content of the one 
middle size envelope 

Content of the other 
middle sized envelope 

 

a 1R, 2R, 3R 1B, 2B, 3B  

b 1R, 2R, 3B 1B, 2B, 3R  

c 1R, 2B, 3B 1B, 2R, 3R  

d 1R, 2B, 3R 1B, 2R, 3B  
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other two p-probabilities may be expressed by wi in the following way:  

(2)   (3)  

If we substitute (1), (2) and (3) in (*), we get the proof for (*). This inequality (*) unifies 
two components: the empirical fact about a colour of discs in the little envelopes and the 

assumption that the colour of the discs was determined as it was put in the envelope. If the 
probabilities p (as estimated from the empirical lists) do not satisfy a Bell inequality, then one of 
these pieces of information is not valid. The first is “proven” by the experiment; only the second – 
our assumption – could be false. In this case the correlation is not based on common reason. But 
we are able to eliminate direct information from A to B (“we take A very far from B“). It means if 
the inequality is violated then a special new type of correlation should exist.  

 
Conflicts with Bell inequalities as starter for quantum logic 

In quantum physics it occurs that these rules are unavoidable, we can not measure 
complementary quantities. If we measure the spin of a proton and neutron, which form together a 
deuteron atom, the sum of spins amounts to 0. After the fissure of this deuteron two components 
are flying in opposite directions with the same velocity. In two laboratories the spin component of 
the proton and the neutron are measured in only one of three spatial directions. The results have to 
be different. Making many experiments we see that the Bell inequalities are not valid. It means that 
in quantum mechanics there is another type of correlation as we have learned it. This model of a 
real phenomenon, which can be taught in school, helps us to understand its paradox characters (see 
Shimony 2006 for a complex summary about this topic).  

 
Conclusions 

We have seen some important differences between logical implication and the favourable 
relation. Many “contradictions” would be avoided if the classical thinking has not yet imprinted 
our mind; therefore conditional probability has to be taught as early as possible. Nobody fails to 
notice the lack of transitivity in a football league but in mathematics it is really problematic 
because in this field we have been involved so much with transitive relations (<, =, similarity, etc.) 
that by the end we can not imagine such a situation any more where transitivity fails. 

From many points of view, the situation in teaching statistics or modern physics is similar. 
Quantum logic is probability logic. Probability and statistics play a central role in physics and to 
extend such links would promote a cooperation and collaboration useful for both sides. 
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