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We propose to teach tertiary probability focusing on general probabilistic principles that lead to 

general probabilistic problem-solving strategies. The method enhances theoretical understanding 

of general models and at the same time, supplies students with a toolbox for handling the extremely 

wide range of possible applications of probability theory. According to experience, the method is 

particularly effective when applied to prospective teachers, as it helps in building up self-

confidence both as students and as future teachers, a confidence that may later be transferred to 

their students. 

 
INTRODUCTION 

Designing a Probability course is a dual challenge: Probabilistic ideas are unfamiliar and 

often non-intuitive for students, resulting in many misconceptions in students’ understanding and 

application of the theory (see Kahneman, Slovic & Tverski, 1982; Leviatan 1998, 2002). In 

addition, students find it confusing that a wide range of possible applications follows each new 

topic and that no two problems seem to be alike. 

Years of debate about these issues have resulted in the formulization of some general 

probabilistic principles that lead to a reasonable number of general problem solving strategies. 

Once a well-defined collection of strategies is compiled, a probability course can then be designed 

around a structured strategies “discovery” process (preferably by the students themselves, in the 

classroom setting). The strategies are used repetitively to solve problems of increasing complexity, 

with combination of strategies sometimes used to handle a single more complex problem. 

In section 1 we present some of the theoretical principles, in section 2 we describe some 

resulting strategies, and finally we offer directions for future research. 

 

SECTION 1: PROBABILISTIC PRINCIPLES 

It is advisable to start probability courses (in particular ones designed for prospective 

teachers) with a historical account, presenting the various historical approaches to probability 

theory. The most important models presented in such an introduction are: 

• Pascal & Fermat’s model (applicable only to finite symmetric sample spaces): The 

probability that an event A will occur in a given experiment, is defined as 

  

• Von Mises’ (more general) model, which is based on many independent repetitions of an 

experiment: The probability of an event A is defined via the frequency of the repetitions 

that resulted with A, relative to the total number of repetitions. 

• A theoretical discussion of the characterizing properties of probabilities of events, under 

both models, leads to the final historical step: The axiomatic approach. 

 

The conclusion of such an account is that the general theoretical framework of a tertiary 

Probability course should be axiomatic, while in problem solving one naturally resorts to the above 

first two applicational approaches. 

In this section we present some general probabilistic principles that lie behind successful 

problem solving and lead to general problem solving strategies. Identifying such principles makes 

the presentation of examples in class more transparent and demystifies the ways problem solving is 

approached. 

 

• The principle of multi-stage experiment:  to better understand a complex probabilistic 

experiment, equivalently describe it as if performed in stages where each stage is a simple 

probabilistic experiment. 
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[Note:  where  - the number of outcomes of stage  experiment. Also, 

computing , where - an event of stage i, is typically a simple task.] 

Examples: An experiment of tossing 2 identical coins at once is probabilistically equivalent to 

two consecutive tossing of a single coin. 

An experiment of drawing n balls together out of an urn is probabilistically equivalent to n 

draws, without replacement, one ball at a time (see an example below). 

The same goes for n balls placed in compartments (occupancy problems), arrangement of n 

objects in a row (permutation problems), etc. 

• The multi-stage symmetry principle (a special case of a more general symmetry principle):  If 

the outcomes of each stage are equally likely then the outcomes of the whole multi-stage 

experiment are equally likely. 

[A very useful observation because identifying symmetry at each stage is usually 

straightforward.] 

• The principle of a multi-stage events: A is called a multi-stage event if it can be expressed as 

 where  is an event of stage i experiment, in which case . 

Using complement/union operations, it is often possible to express a given event in terms of a 

finite number of simple multistage events.  

Example (can easily be generalized to the Binomial model): B - Exactly 3 vowels (a,e,i,o,u) in 

a k letter code selected at random.  B is not a multistage event but we can express 

 as a union of  disjoint multistage stage events:  

- vowels only in the i,j,m places.   

[  (equally likely),  .] 

The next two more subtle principles are very useful and should always be kept in mind. 

 

• The focus principle: It is often possible to focus on certain aspects of the 

experiment and disregard irrelevant aspects.  

Example: The probability that the l'th letter in a k digit code is a vowel is 5/26. 

All other letters in the code are irrelevant. 

• The principle of ordered/non-ordered sampling: when sampling k elements without 

replacements out of a population, one often has the probabilistic freedom to choose between 

ordered and non-ordered sampling models. 

Example (can easily be generalized to the Hypergeometric model): k=3 balls are drawn without 

replacement out of an urn containing n=2 black (B) balls and m=4 white (W) balls. A – 

Exactly 2 white balls drawn.  The ordered approach (see the first three principles) is to 

think equivalently of 3 balls drawn without replacement out of an urn containing 6 

distinguishable balls . A is not a multistage event, but it can be expressed 

as a union of 3 such events, yielding . Note that this approach 

becomes "messy" for large values of k,n,m. Applying the non-ordered approach 

, yielding exactly the same result as in the ordered model 

approach. 

 

A typical probability course offers many opportunities to apply these principles both while solving 

problems and while formulating general models. 
 

SECTION 2: PROBLEM SOLVING STRATEGIES 

We argue that the most efficient approach to problem solving is to formulate problem 

solving strategies. The probabilistic strategies offered here are easy to disseminate and their names 



ICOTS8 (2010) Contributed Paper  Leviatan 

International Association of Statistical Education (IASE)  www.stat.auckland.ac.nz/~iase/ 

are used as buzz words throughout the course. For a more detailed list of strategies, arranged in 

four layers, and more examples, see Leviatan, (2005) 

• First layer strategies are based (directly or indirectly) on the axioms of probability. These 

seemingly simple strategies will prove to be very effective throughout the entire course. 

 The additive strategy: Decompose the event A into a union of simpler disjoint events, 

preferably equally likely, and add their individual probabilities.  

 The complement strategy: Check if the complementary event, , is simpler.  

 The decomposition strategy: Decompose a complicated event A into a finite union of  n 

simpler events - not necessarily disjoint, and use the inclusion-exclusion formula 

  (see e.g. Ross, 2009, and final example here).  

• Second layer strategies are strongly related to the general principles of probability described in 

section 1:  

 

 The Equivalent problem strategy: Try to formulate a simpler equivalent problem. 

Example: The event A- Bob and Bill celebrate their birthdays on the same day,  

is equivalent to A'- Bob celebrates his birthday on, say, Jan 1. Thus P(A)=1/365.  

[The multistage principle is an important special case of this universal strategy.]  

 The Symmetry strategy: Check first for symmetries in the probability space. 

Example: A train arrives at the station every 60 minutes. Bob, Dan and Ron,  

each arrive at a random time. A - Bob waits longer than Dan. To compute P(A), 

one can avoid uniform continuous probability spaces. It suffices to observe the 

symmetry between the two persons to deduce P(A)=1/2. Similarly P(they arrive 

according to alphabetical order) = .  

 The focus strategy: When dealing with a complicated experiment focus on 

relevant elements of the experiment, ignore the rest.        

Example: n=9 knights sit randomly around a table. A - exactly  persons sit 

between King Arthur and Lancelot. To compute P(A) ignore all other 7 knights 

and focus on Arthur and Lancelot seated by a 9-seat table. Let King Arthur choose 

any seat, now Lancelot chooses a seat at random, thus . 

 

We will not present here 0
th

 layer graphical strategies, or 3
rd

 layer more advanced 

strategies. Note that often a solution of a more complex problem requires the use of several 

strategies, one after the other. We conclude with two such examples. 

Example: 3 girls and 5 boys form four pairs at random. A- three mixed-sex pairs. The first two 

principles lead to  (a 4-stage experiment). Note that this approach 

introduces an element of order between pairs which has to be taken into account also in the 

numerator (!), thus , and . A much simpler 

approach is to adopt the focus strategy: focus on the problem of 3 girls choosing their 

partners at random. A 3-stages approach yields . 

Note that originally there was no element of order between pairs in the experiment,  

to use the multi-stage approach we introduced an element of order (see order/ non-order 

principle) which necessarily effects both denominator and numerator! 

Example (The matching problem): Don Juan writes n letters to his current n girl friends. 

Absentmindedly, he puts the letters at random into the envelopes. What is the probability 

of A- Don Juan ends up with no girl friend? First use the complement strategy: - at least 
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one girl friend left. Then use the decomposition strategy to express  

where - letter number i gets into the right envelope. Using the symmetry strategy, note 

that , ,  etc. Using the 

focus strategy, note that , , …  

Thus ,   ,   , …  

Using the inclusion-exclusion formula, , 

yielding finally: .     [Note  as .] 

 

CONCLUSIONS 

• To be able to solve non-routine problems students should be supplied with a proper toolbox. A 

printed list of effective strategies developed and demonstrated throughout the course seems to 

do the trick. 

• The strategies should be intimately connected to the basic mathematical concepts (rules and 

principles) of that subject, thus enhancing understanding of the new theoretical ideas.  

• The strategies should appear as simple as possible. To solve a more complex problem, a 

combination of several strategies may be required. 

• It is beneficial to expose the general principles that lie behind the strategies. 

During the course we compile a list of all probabilistic principles and strategies (about 20) 

observed throughout the course, each exemplified by a simple “generic example”. The principles 

and strategies, constantly discussed, supply a good starting point for approaching a new problem 

and for developing new models. It will be interesting to make a more systematic research on the 

effectiveness of the combined approach suggested here. 
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