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When modeling data one important rule to consider states: the model should fit the data and not 

vice versa. There is one problem well known by teachers and researchers: Students often do not 

realize the gap between data and model, they mistakenly consider the model as reality. In this 

situation the residuals defined as the difference between data and model become important: they 

remind us of modeling the trend in data and not the data itself. Whereas the model stands for the 

explained variation, the residuals represent the unexplained variation. This is at the core of 

statistical thinking. In this paper, the significance of the residuals for modeling data is examined 

from different perspectives. 

 

MODELING DATA WITH FUNCTIONS 

At all grade levels students in school learn about natural, technical and social phenomena 

of their daily experience. Often functional dependencies between different factors are of particular 

interest, like speed of sound or growth of plants. To explore these relationships the students have to 

analyze data, extract the trend in the data and describe it by a mathematical function. Especially in 

the natural sciences often elementary functions are appropriate to fit the data. Thus, analyzing data 

is one important approach to connect the ideas of functional thinking and modeling data in a 

genuine way as a special part of the overarching idea Change and Relationships (s. OECD, 2003). 

Starting point for investigating functional relationships between two empirical variables 

are n pairs of measurements (x1, y1), …, (xn, yn) represented in a scatter plot. The objective of the 

modeling process is to derive a function f expressing the dependence of the two variables either 

through a functional term of the form y = f (x) or a function graph. A simple graph or functional 

equation y = f (x) representing the data cloud is an efficient compression of the data which is easy 

to communicate to others and easier to interpret and compare with other graphs than the complete 

original data set (Engel, 2005). As for any type of mathematical model, the obtained representation 

may play a decisive role in understanding the dynamics driving the observed phenomena, 

predicting new data and, possibly, forming the basis for effective intervention. This is at the core of 

statistical thinking: “Statistical thinking is concerned with learning and decision making under 

uncertainty. Much of that uncertainty stems from omnipresent variation. Statistical thinking 

emphasizes the importance of variation for the purpose of explanation, prediction and control.” 

(Wild & Pfannkuch, 1999) 

What is this kind of analyzing data in terms of modeling? Data are numbers with context. 

According to Eichler and Vogel (2009) the data are the foundation of what Blum (2002) calls the 

real model of the situation. The process of mathematising can be described by the signal-noise 

metaphor of looking for signals in noisy processes (Konold & Pollatsek, 2002). In this context 

Borovcnik (2004) is talking about the structural equation which represents data as decomposed 

into a signal to be recovered and noise.  

data = signal + noise 

In the context of bivariate data, this leads to modeling the covariation with a mathematical 

function. This is the mathematical model. Accordingly, the structural equation becomes: 

data = function + residuals 

Figure 1 illustrates the structural equation in a concrete example by means of modeling the linear 

relationship between temperature and pressure of a gas within a pressure-vessel with constant 

volume. 

The linear function represents the model as “deterministic concentrate of the data” the 

explained variation, in contrast the residuals (= data - function) stand for the unexplained variation 

of the data. As difference between function and data the residuals contain information about the 

goodness of fit: The less structured they appear to be scattered, the better the function fits the trend 

of the data. The residuals can be modeled stochastically. In the simplest case this noisy factor, 

usually denoted by , is modeled as independent random variable with expected value 0 and a 

constant variance.  
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Figure 1. Example for the structural equation data = function + residuals 

 

Students often mistake the model for reality (Hummenberger & Reichel, 1995). This 

problem often occurs for example when students recover laws of science like Newton’s law of 

dynamic F = m  · a (with F force, m mass and a acceleration) or the relationship between path p and 

time t in case of free fall p = 0.5  · g · t  (without accounting for aerodynamic resistance) by 

modeling data. At school experiments in the natural sciences are usually carried out to rediscover 

such laws. Then their validity can become obvious to the students. With regard to the modeling 

process there is one entrapment in this situation: When students know which outcome of the data 

analysis process to be expected, they might be misled and see the data not fitting the model as 

something “wrong”. The residuals might be helpful in this situation: they result from the modeling 

process and remind us what has been first there - the data but not the function. They witness: it is a 

process of modeling and there is a gap between data being part of the real world and the 

mathematical model being part of the mathematical world. The residuals represent an important 

source of information: they contain that information being disregarded in the (first) cycle of the 

modeling. Thus, they have to tell us something. 

 

WHAT RESIDUALS CAN TELL US 

The residual plot can be explained to the students as being something like a magnifier of 

the modeling process. Whereas the scatter plot with the modeling function (e.g., middle of Figure 

1) shows the modeling situation as a whole, the residual plot magnifies what has been left over. 

Looking in detail there can be found some interesting information. 

Measuring comparable objects of one sort or collecting data of a physical process like free 

fall, one can observe: with increasing values usually the residuals of the modeling function often 

also increase. This phenomenon is known as heteroscedasticity. The left-hand scatter plot in Figure 

2 illustrates the measurement width vs. length (measured in centimeters) of a sample of shells of 

the native butter clam (data are available at http://seattlecentral.edu/qelp/sets/001/001.html). The 

linear function stands for the averaged ratio of width and length. The corresponding residual plot 

clearly shows residuals of increasing magnitude. The same effect can also be observed when 

measuring leafs of a tree. Heteroscedasticity can also be found in non-linear situations. The scatter 

plot on the right of Figure 2 illustrates modeling data of free fall by a quadratic function. With 

increasing time the residuals also increase. 

 

  

 

Figure 2. Increasing residuals with increasing values 

Whereas in case of the clams the major variability of major shells seem to be a good explanation 

for this effect, in case of free-fall-data the increasing imprecision of the measurements explains his 

phenomena of heteroscedasticity plausibly. 
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From the structural equation “data = function + residuals” directly results: If the residuals 

increasingly differ from the modeling function either systematically upwards or systematically 

downwards the function increasingly worsens in being an adequate model. A data-set of 

radioactive decay of Barium-137m can illustrate what is meant (s. Figure 3 left-hand). The data-fit 

through an exponential function increasingly worsens. Although there are good reasons to take an 

exponential function as model, that is the solution of the differential equation , it does 

not work for the whole process. What happens is that the curve modeling the exponential decrease 

does not contain the base rate of natural radiation. 

 

  
 

Figure 3. Residuals focus on goodness of fit 

 

The potential of a careful residual analysis on improving the original model is illustrated in Figure 

3 (right-hand): The data showing the functional dependency between baseline and area of triangle 

result from folding a piece of paper in a special way (for details see Biehler et al., 2007). Just by 

looking at the scatter plot, a quadratic function results in a seemingly satisfactory model. But when 

inspecting the residual plot, it becomes apparent that a cubic function may be more appropriate. 

These examples illustrate that residuals contain an important message. They are much 

more than a waste of modeling. Erickson (2005) formulates: “How close is close enough? A real 

function never goes through all the points. It only comes close. There is no firm rule, but we will 

learn about a tool here - the residual plot - that may be the most important piece of data analysis 

machinery since the slide rule.” 

 

RESEARCH QUESTIONS 

Addressing this enthusiastic statement our approach investigates students’ actions and 

thinking patterns when modeling data by elementary function according to the signal-noise 

metaphor. We concentrate on the question, which competencies and skills are required from 

students in their modeling process when they have to account for residuals by fitting a curve. In 

particular, in our research we focus on two research questions: 

 

• How do students handle residuals in their modeling processes? How do they appreciate and 

interpret them with regard to the signal-noise metaphor? Do they accept respectively 

regard them at all? 

• Can residuals actually be helpful for students to understand the modeling process and help 

them to realize the gap between model and reality? 

 

First of all, we want to get information about how students look at different function models 

without having learned about the structural equation before. 

 

SOME DETAILS OF A PRELIMINARY STUDY 

In a first step of our preliminary study we focus on how students without being 

experienced in modeling data with functions will judge two different ready-made models given to 

them. For this, 26 middle-school students (9
th

 grade, aged 14-15) were given two graphs modeling 

the functional dependency between height and weight of six adult persons (s. Figure 4). Without 

further information about residuals, they were asked which of the two models they consider to be 

more appropriate to describe the relationship between body size and weight. Besides asking for a 
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choice between the two models, our main interest focused on their reasoning, why they preferred 

one model over the other. 

 

 

 

 

 
 

Figure 4. Two different models describing functional dependency 

between body height and weight of 6 people 

 

There were different arguments for the left-hand model like e.g. “the left-hand model is 

better because showing the variability more exactly” or “the left-hand model can be read more 

easily by fitting all points, in contrast the right-hand model seems to be unclear, the model matches 

only two points.” First results of a qualitative analysis of all students’ comments reveals - besides 

many questions in detail - a tendency for two patterns lying beyond the arguments for the strongly 

deterministic model left-hand of Figure 4: the more exact the fit, the more precise and hence the 

better the model. Moreover, there was a tendency to neglect the data context and argue only on the 

basis of scatter plots given to the students. These preliminary results will be reviewed by 

interviewing students who preferred the full-fit model. Thus, more information will be available 

about students thinking. This information should be helpful to plan and design further studies 

addressing the research questions mentioned above. 

 

CONCLUSIONS 

From a mathematical perspective the residuals enrich the process of modeling bivariate 

data with functions: they contain information about the phenomenon modeled by function and 

about the goodness of fit. How students realize and handle residuals, and what has to be done, so 

they can benefit from them in their activities of modeling data, this is an interesting subject of 

further research in field of statistical thinking”.  
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