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This quasi-experiment compares student learning outcomes from three college statistics courses to 

investigate whether greater randomization test content explains gains in conceptual understanding 

of inference, adjusting for prior knowledge and mathematical ability. The study uses a 34-item 

Reasoning about P-values and Statistical Significance (RPASS) scale to measure gains in students’ 

inferential understanding. Of two introductory courses, one has limited randomization content (n1 

= 55). The second emphasizes randomization, simulation, and P-values throughout (n2 = 26). The 

third is a second course in statistics that reviews randomization tests at the beginning of the course 

(n3 = 24). Comparative results, score reliability, and the changes in respondents’ correct 

conceptions and misconceptions are reported. Directions for future research are discussed. 

 

INTRODUCTION 

Teaching inference using randomization or permutation tests is believed to deepen 

students’ conceptual understanding of inference (Cobb, 2007; May & Hunter, 1992; Rossman, 

2008). Psychologists May & Hunter (1993) asserted that teaching inference using permutation tests 

for comparing two sample groups could serve three pedagogical benefits. They assert that using 

randomization simulations or permutation tests to teach inference can: 

• Clarify whether hypotheses being tested relate to sample statistics or population parameters 

• Offer a more appropriate analysis option, if conditions for normal theory are not met 

• Differentiate randomization distributions—used to make inferences about group associations—

from normal distributions—used to make inferences about populations from random samples 

Cobb (2007) further claims randomization tests can bring the “logic of inference” to the center of 

the introductory course. Randomization simulations can be used to explicitly highlight the “Three 

R's of inference…[to] randomize data production; repeat by simulation to see what’s typical and 

what's not; and reject any model that puts your data in its tail” (Cobb, 2007). Rossman (2008) also 

suggests that “simulation of the randomization test provides an informal and effective way to 

introduce students to the logic of statistical inference.” There is no evidence of a link between 

teaching inference using randomization distributions and students’ inferential understanding. The 

goal of this study is to explore whether and to what extent greater exposure to randomization tests 

and simulations explain gains in students’ inferential understanding as measured by the Reasoning 

about P-values and Statistical Significance (RPASS) scale (Lane-Getaz, 2007).  

 

METHODS 

This quasi-experimental study compares student learning outcomes from three college 

statistics courses to investigate whether greater randomization test content explains gains in 

conceptual understanding of inference. The design is similar to a group comparison experiment but 

without randomization of subjects to groups (Pedhazur & Schmelkin, 1991); therefore, gain scores 

were adjusted for prior knowledge and mathematics ability. Concepts for items with a large pretest 

to posttest change in the proportion of students’ answering the item correctly (> .30) are reported. 

 

Instrument  

The 34-item Reasoning about P-values and Statistical Significance (RPASS-7) scale was 

administered as a pretest and posttest to measure the effects of different courses on students’ 

conceptual understanding and misunderstanding of inference (Lane-Getaz, 2007, 2008). Internal 

consistency reliability of RPASS scores was estimated using Cronbach’s coefficient alpha. Student 

explanations were requested on eight selected RPASS items as insight to item functioning. 
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Subjects and setting 

During spring 2009 students enrolled in three sections of Principles of Statistics (Course-

1), three sections of Statistics for Science (Course-2), and two sections of Statistical Modeling 

(Course-3) at a small US liberal arts college were invited to participate. Of the 215 students 

enrolled in the courses, 132 completed the RPASS as a pretest and posttest. The sample includes 

105 respondents who answered every item. Table 1 details their class year and gender by course. 
 

Table 1. Number of Sample Respondents by Class Year, Gender, and Course (N = 105) 
 

  Class year   Gender   

Course Freshman Sophomore Junior Senior   Female Male Total 

Course-1 23 22  5  5  45 10  55 

Course-2  9 10  2  5  19  7  26 

Course-3  5  5 11  3  12 12  24 

 

Course descriptions  

All three courses expose students to randomization tests, use real data, and require 

completion of a final research project. Course-1 is a terminal, introductory course for the liberal 

arts with an Algebra prerequisite. The text is Statistics: Concepts and Controversies (Moore & 

Notz, 2002). Tools include SPSS, Fathom, and Minitab. Course-2, an introductory course for 

students in the sciences with a Calculus prerequisite, introduces randomization content early and 

repeatedly throughout the course. The text is Investigating Statistical Concepts, Applications, and 

Methods (Chance & Rossman, 2006). Tools used include Minitab and applets that accompany the 

textbook. Course-3, a second course in statistics, reviews randomization tests and t-tests for the 

first third of the course, then builds toward multiple regression, ANOVA, and multiple logistic 

regression using R. The text is The Statistical Sleuth (Ramsey & Schafer, 2002).  
 

RESULTS 

The 105 sample respondents answered 25.5 of 34 RPASS posttest items correctly, 75% on 

average. RPASS posttest results were unimodal and somewhat left skewed (M = 25.5, SD = 4.6, 

Mdn = 26, IQR = 6). A preliminary two-way ANOVA was conducted to compare RPASS pretest 

scores included in the sample to those excluded, by course. There was no statistically significant 

interaction effect (F(2,168) = .23, p = .79). Similarly, no statistically significant interaction was found 

between included and excluded posttest scores by course (F(2,134) = .37, p = .69). Course-3 posttests 

included in the sample did have scores that were 2.3 items higher, on average, than posttests 

excluded from the sample (n = 24, n = 17, respectively; t(39) = 2.56, p = .02). Nevertheless, the 

sample was sufficiently representative of all respondents taking the RPASS pretests and posttests.  

Figure 1 displays boxplots for RPASS pretest scores. Figure 2 depicts boxplots for RPASS 

posttest scores, clustered by instructor. The clustered boxplots suggest no instructor effect, which is 

of import since Instructor 3 is the researcher. Course-1 and Course-2 had similar RPASS pretest 

distributions with Course-3 having higher initial scores, on average. Course-2 and Course-3 had 

similar RPASS posttest distributions. Thus, boxplots of gain scores by course (Figure 3) show 

Course-2 achieved the greatest gains in inferential understanding. Table 2 enumerates RPASS 

pretest and posttest means, mean gains, and standard deviations by course. 
 

  
 

Figure 1. Boxplots of RPASS pretests, N = 105 

 

Figure 2. Clustered boxplots of RPASS posttests 

by instructor within course, N = 105 
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Table 2. Sample RPASS Pretest and Posttest Means, Gains, and SDs by Course (N = 105) 

 
Course N RPASS pretest mean (SD)  RPASS posttest mean (SD) Mean gains (SD) 

Course-1 n1 = 55 17.4 (3.0) 23.2 (4.5) 5.8 (5.0) 

Course-2 n2 = 26 17.8 (4.0) 27.4 (2.9) 9.6 (4.5) 

Course-3 n3 = 24 25.0 (4.8) 28.7 (3.1) 3.7 (4.4) 

 

To facilitate course comparisons given the absence of randomization, scores were adjusted 

using RPASS pretests (for prior knowledge) and ACT Mathematics (for math ability), likely 

confounds. The effect of the course was not statistically significant (F(2,83) = 2.08, p = .13, partial 
2
 

= 5%, N = 88: n1 = 51, n2 = 15, n3 = 22). With the sample size reduced to the 88 respondents who 

took the ACT Math exam, power may have been insufficient to detect an effect. Helmert contrasts 

indicated the adjusted mean gain for Course-1 was 2 items less than the adjusted mean gain for the 

combination of Course-2 and Course-3 (p = .05 two-tailed, 95% CI ranging from 0 to 3.9 items). 

Three additional ANCOVA analyses were run imputing missing values to increase sample 

size and power. The course taken was statistically significant in all three analyses. In the first and 

most conservative analysis zero was imputed for missing gain scores, increasing sample size to 

108. The course taken explained 7% of the variation in gains, adjusted for RPASS pretests and 

ACT Math scores (F(2,103) = 4.0, p = .02, partial 
2
 = 7%, N = 108: n1 = 66, n2 = 17, n3 = 25). 

Course-2 and Course-3 respondents answered an average of 2.6 additional items correctly 

compared to those in Course-1 (95% CI from .7 to 4.5 items). ACT Math remained statistically 

significant in this analysis (F(1,103) = 15.8, p < .001, partial 
2
 = 13%, N = 108). The RPASS 

adjusted mean gains, standard errors, and 95% confidence intervals are reported in Table 3 by 

course. Figure 4 shows the adjusted mean gains plotted by course. For the remaining two analyses 

sample size increased to 123 (imputing zeros for skipped items) and 129 (imputing zero for skipped 

items and missing gains). ACT Math was no longer statistically significant. Course explained 

13.9% and 7% of variation in gains, respectively. Increasing sample size through imputation also 

improved the RPASS posttest score reliability estimate from  = .76, N = 105 to  = .82, N = 175. 

 

Table 3. Adjusted Mean Gains, Standard Errors, and Confidence Intervals by Course (N = 108)
a 

 
Course Adjusted mean gains Standard Error 95% Confidence interval 

Course-1 3.9
b
   .6 (2.8, 5.0) 

Course-2 7.0
b
 1.0 (5.0, 9.1) 

Course-3 6.1
b
 1.0 (4.1, 8.1) 

Note. 
a
Imputed zero for missing gain scores.

 b
Covariates: RPASS pretest = 19.26, ACT Math = 27.32. 

 

  
 

Figure 3. Boxplots RPASS gains, N = 105 

 

Figure 4. RPASS adjusted mean gains, N = 108 
 

Inferential concepts with the largest pretest to posttest change in the proportion of students 

answering correctly included: assessing significance graphically (.37 to .77), and understanding 

that P-values are dependent on the direction of the alternative hypothesis (.28 to .65), that smaller 

P-values provide stronger evidence of an effect (.56 to .91), and that P-values are related to 

sampling variation (.59 to .91). Two misconception items showed a large change in the proportion 

correct: confusing the significance level alpha with the P-value (.54 to .86) and ascribing chance as 

the cause of the observed results (.60 to .90). The proportion change for respondents selecting the 
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correct P-value definition among three common misconceptions increased from .53 to .84. 

However, written explanations revealed difficulties understanding relationships between one-tailed 

and two-tailed tests. One item read: “Assume a student had conducted a two-tailed test instead of a 

one-tailed test on the same data, how would the P-value (.048) have changed?” Eleven respondents 

wrote they would divide the one-tailed P-value in half to obtain a two-tailed P-value. Another item 

read: “One student argued that the appropriate P-value should be 7/100 or .07 for a one-tailed 

hypothesis, which was sufficient to reject at the .10 significance level but insufficient to reject at 

the .05 level.” Fourteen students wrote that they needed to conduct a two-tailed test, even though 

the context called for a one-tailed test. This difficulty had not been previously identified. 

 

DISCUSSION  

This quasi-experimental study compares student learning outcomes from three college 

statistics courses to investigate whether greater randomization content explains gains in inferential 

understanding. Respondents in the introductory course with greater randomization content (Course-

2) attained a statistically higher mean gain in inferential understanding compared to those in the 

introductory course with less randomization content, even after adjusting for prior knowledge and 

math ability. The adjusted mean gain for Course-2 was equivalent to Course-3, a second course in 

statistics. While quasi-experimental designs are insufficient to draw strong causal conclusions, the 

study does link greater exposure to randomization content to a better understanding of inference. 

RPASS score reliability was sufficient to support group comparison (Pedhazur & Schmelkin, 

1991). However, some potential benefits of randomization content for teaching inference (May & 

Hunter, 1993; Cobb, 2007) may not be measured by RPASS. Items need to be explicitly identified, 

validated, and tested to better assess these potential benefits. 

This study lays a foundation for future experimental studies to evaluate the effectiveness of 

randomization methods for teaching inference. Future studies should explore the confusion 

between one-tailed and two-tailed tests, retention of inferential understanding, and compare courses 

with and without randomization content. In so doing, evidence can also be used to improve RPASS 

psychometric properties, so results and conclusions can be transferred across studies. 
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